Abstract

We report what we believe to be the first operation of more than 1000  h of a 266-nm (cw) frequency-quadrupled solid-state laser with a 100-mW output. We used βBaB2O4 (BBO) crystal grown by the Czochralski method to double the green-light (532-nm) wavelength, using an external resonant cavity. The green light was generated with an intracavity frequency-doubled Nd:YVO4 laser pumped by a 4-W laser diode. When the incident 532-nm power on the external resonant doubler was 500  mW, we generated 100  mW of cw 266-nm radiation with the BBO crystal. The degradation rate seems to be proportional to the strength of the UV optical electric field. We also obtained a relative intensity noise of -130 dB/Hz at frequencies of 2 to 10  MHz for 266-nm laser light.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Tidwell, J. F. Seamans, D. D. Lowenthal, G. Matone, and G. Giordano, Opt. Lett. 18, 1517 (1993).
    [CrossRef]
  2. Y. Taira, Jpn. J. Appl. Phys. 31, L682 (1992).
    [CrossRef]
  3. M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
    [CrossRef]
  4. W. Wiechmann, L. Y. Liu, and S. Kubota, in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), p. 273.
  5. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  6. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
    [CrossRef]

1995 (1)

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

1993 (1)

1992 (1)

Y. Taira, Jpn. J. Appl. Phys. 31, L682 (1992).
[CrossRef]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Eguchi, N.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Giordano, G.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kubota, S.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

W. Wiechmann, L. Y. Liu, and S. Kubota, in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), p. 273.

Liu, L. Y.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

W. Wiechmann, L. Y. Liu, and S. Kubota, in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), p. 273.

Lowenthal, D. D.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Matone, G.

Oka, M.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

Seamans, J. F.

Taira, Y.

Y. Taira, Jpn. J. Appl. Phys. 31, L682 (1992).
[CrossRef]

Tidwell, S. C.

Wiechmann, W.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

W. Wiechmann, L. Y. Liu, and S. Kubota, in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), p. 273.

IEEE J. Quantum Electron. (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Sel. Topics Quantum Electron. 1, 859 (1995).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Taira, Jpn. J. Appl. Phys. 31, L682 (1992).
[CrossRef]

Opt. Lett. (1)

Other (1)

W. Wiechmann, L. Y. Liu, and S. Kubota, in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), p. 273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of the 266-nm solid-state laser and the external cavity used for generating 266-nm UV light. PD, photodetector; R3, R4, flat mirrors; VCM, voice coil motor.

Fig. 2
Fig. 2

Relation between round-trip loss δcav and elapsed operational time.

Fig. 3
Fig. 3

Relation among input green power, coupled green power, UV power, and elapsed operational time.

Fig. 4
Fig. 4

Dependence of the degradation rate on UV power density.

Fig. 5
Fig. 5

Relative intensity noise (RIN) of 266-nm laser light (resolution bandwidth, 30  kHz; video bandwidth, 100  Hz; input power, 1  mW).

Fig. 6
Fig. 6

Microscope image of the BBO crystal surface with a beam waist of 23 µm (magnification, 160×).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PUV=ηSHPc=γSHPc2,
Pc=TcPi=1-R11-R1Rm2Pi.
δcav=1-Rm-ηSH.

Metrics