Abstract

In a recent experiment it was demonstrated that polarization-division multiplexing was incompatible with wavelength-division multiplexing. We discuss a theoretical model that explains this result.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, J. P. Gordon, and F. Heismann, Opt. Lett. 20, 2060 (1995).
    [CrossRef] [PubMed]
  2. S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].
  3. P. K. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett. 16, 1231 (1991).
    [CrossRef] [PubMed]
  4. P. K. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  5. D. Marcuse, C. R. Menyuk, and P. K. A. Wei, J. Lightwave Technol. 15, 1735 (1997).
    [CrossRef]
  6. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
    [CrossRef]
  7. T. Ueda and W. L. Kath, J. Opt. Soc. Am. B 11, 818 (1994).
    [CrossRef]

1997

D. Marcuse, C. R. Menyuk, and P. K. A. Wei, J. Lightwave Technol. 15, 1735 (1997).
[CrossRef]

1996

P. K. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1995

1994

1992

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

1991

1973

S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].

Bergano, N. S.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Chen, H. H.

Evangelides, S. G.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, and F. Heismann, Opt. Lett. 20, 2060 (1995).
[CrossRef] [PubMed]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Heismann, F.

Kath, W. L.

Manakov, S. V.

S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].

Marcuse, D.

D. Marcuse, C. R. Menyuk, and P. K. A. Wei, J. Lightwave Technol. 15, 1735 (1997).
[CrossRef]

Menyuk, C. R.

D. Marcuse, C. R. Menyuk, and P. K. A. Wei, J. Lightwave Technol. 15, 1735 (1997).
[CrossRef]

P. K. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

P. K. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett. 16, 1231 (1991).
[CrossRef] [PubMed]

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, and F. Heismann, Opt. Lett. 20, 2060 (1995).
[CrossRef] [PubMed]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Ueda, T.

Wai, P. K.

P. K. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

P. K. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett. 16, 1231 (1991).
[CrossRef] [PubMed]

Wei, P. K. A.

D. Marcuse, C. R. Menyuk, and P. K. A. Wei, J. Lightwave Technol. 15, 1735 (1997).
[CrossRef]

J. Lightwave Technol.

P. K. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

D. Marcuse, C. R. Menyuk, and P. K. A. Wei, J. Lightwave Technol. 15, 1735 (1997).
[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Zh. Eksp. Teor. Fiz.

S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Numerically generated plot of dpol for an R train as a function of the number of possible collisions. The L train has a random bit pattern. Solid line, γ11=0; short-dashed curve, γ11=π/8; long-dashed curve, γ11=π/4. For all plots μ=0.5 and N=40.

Fig. 2
Fig. 2

Numerically generated plot of dpol for an R train as a function of numbers of possible collisions, with the effects of weak birefringence incorporated. The L train has a random bit pattern as in Fig.  1; results for three different random bit patterns are plotted. For all plots μ=0.5, N=40, and Δα=0.08 rad.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

iqz=qtt+2qqq.
qz, t=2ηcexp-i2ξt+4η2-ξ2zcosh2ηt-4ξz,
c=[cosθexpiα1sinθexpiα2].
Si=cσic,
c1+=1χζ1*-ζ2ζ1*-ζ2*c1-+ζ2-ζ2*ζ2*-ζ1*c2-*·c1-c2-, c2+=1χζ1*-ζ2ζ1-ζ2c2-+ζ1-ζ1*ζ2-ζ1c1-*·c2-c1-,
χ=ζ1-ζ2*ζ1-ζ2 1+ζ1-ζ1*ζ2*-ζ2ζ2-ζ12c1-*·c2-21/2.
S1+=aS1-+bS2-+cS1-×S2-, S2+=aS2-+bS1-+cS2-×S1-,
a=1/ϕ2cos2γ+sin2γ, b=1-a, c=aϕ2-1,
ϕ=ζ2-ζ1*/ζ2-ζ1.
cosβ=2a-1.
Lji=aijLj-1i+bijRi-1j+cijLj-1i×Ri-1j,
Rij=aijRi-1j+bijLj-1i+cijRi-1j×Lj-1i,
cos2γij=Lj-1i·Ri-1j.
sin2γi+1=ai sin2γi,
sin2γi=sin2γ11+μ2i-11-sin2γ1+sin2γ1,
dpol=i=1NRMi/N.
U=[1000cosΔαsinΔα0-sinΔαcosΔα].

Metrics