Abstract

Compensation for dispersive elements is necessary for efficient multiple-pass and intracavity nonlinear frequency-conversion devices. We describe the use of a wedged quasi-phase-matched crystal to compensate for the phase shifts introduced by mirrors in such devices, taking advantage of the periodic variation in the relative phases of the interacting waves in a quasi-phase-matching grating. A representative double-pass second-harmonic generation experiment with a 5-cm-long periodically poled lithium niobate crystal showed the expected conversion efficiency enhancement.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, P. Kurz, R. Henking, S. Schiller, and J. Mlynek, Opt. Lett. 19, 1325 (1994).
    [CrossRef] [PubMed]
  2. C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
    [CrossRef]
  3. G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
    [CrossRef]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
    [CrossRef]
  5. M. W. Sasnett and T. F. Johnson, Proc. SPIE 1414, 21 (1991).
    [CrossRef]
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  7. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]

1995 (1)

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
[CrossRef]

1991 (1)

M. W. Sasnett and T. F. Johnson, Proc. SPIE 1414, 21 (1991).
[CrossRef]

1990 (1)

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

1989 (1)

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Bhar, G. C.

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
[CrossRef]

Chatterjee, U.

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

Datta, P.

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
[CrossRef]

Hänsch, T. W.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Henking, R.

Johnson, T. F.

M. W. Sasnett and T. F. Johnson, Proc. SPIE 1414, 21 (1991).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
[CrossRef]

Kallenbach, R.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kurz, P.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
[CrossRef]

Mlynek, J.

Myers, L. E.

Paschotta, R.

Pierce, J. W.

Sandberg, J.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Sasnett, M. W.

M. W. Sasnett and T. F. Johnson, Proc. SPIE 1414, 21 (1991).
[CrossRef]

Schiller, S.

Zimmermann, C.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Appl. Phys. B (1)

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2641 (1992).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

M. W. Sasnett and T. F. Johnson, Proc. SPIE 1414, 21 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Layout for analyzing the double-pass SHG process.

Fig. 2
Fig. 2

Normalized output SH power as a function of the transverse position of the wedged PPLN crystal: circles, experimental data; solid curve, fit.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

dE2zdz=iγE12dzexp-iΔkz,
E1f z=E1f expik1z,
E2f z=E2f zexpik2z,
E2f Nlc+lN+1-γg0dQLE1f2,
ϵ2f Nlc+lN+1=-γg0dQLE1f2×expik2Nlc+lN+1,
E1bNlc=E1fNlcexpiϕ1+2ik1lN+1=E1f expik1Nlc+iϕ1+2ik1lN+1,
E1bz=E1bNlcexp-ik1z-Nlc.
E2DP=E2b+E2b,
E2b-l0=E2fNlc+lN+1expiϕ2+ik2lN+1×exp-ik2-l0-Nlc.
E2b-l0=-γgN+1dQLE1bNlc2×exp-ik2-l0-Nlc.
E2DP=-γg0dQE1f21-expiΔϕ+2iΔklN+1,
I2DP=4ω2n2n12c3ϵ0dQ2I12L21-cosδϕ,
ΔΦ=2πlN+1w0-lN+1-w0lc=4πθw0/lc.
P2/P2ΔΦ=0=1-7.0×10-3ΔΦ2,
M2=1+7.2×10-3ΔΦ2.
θ<θmax=ΔΦmax4πlcw00.2lcw0.
Wmin=lcθmax5w0.

Metrics