Abstract

We introduce a novel optical path-modulation technique for a low-coherence interferometric imaging system based on transverse scanning of the target with a galvanometric scanning-mirror pair. The path modulation arises when the beam that is incident upon one of the scanning mirrors does not fall on its axis of rotation. The method is demonstrated by the production of en-face low-coherence images of different objects such as a fiber-optic tip and a human retina in vivo.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987).
    [CrossRef] [PubMed]
  2. A. F. Fercher, J. Biomed. Opt. 1, 157 (1996).
    [CrossRef] [PubMed]
  3. D. G. Luke, R. McBride, and J. D. C. Jones, Opt. Lett. 20, 2550 (1995).
    [CrossRef]
  4. N. Shibata, M. Tsubokawa, T. Nakashima, and S. Seikau, J. Opt. Soc. Am. A 4, 494 (1987).
    [CrossRef]
  5. B. Bouma, D. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, Opt. Lett. 20, 1486 (1995).
    [CrossRef] [PubMed]
  6. A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, Opt. Lett. 21, 1789 (1996).
    [CrossRef] [PubMed]

1996 (2)

1995 (2)

1987 (2)

Boppart, S. A.

Bouma, B.

Brezinski, M. E.

Carr, S.

Davies, D. E. N.

Dobre, G. M.

Fercher, A. F.

A. F. Fercher, J. Biomed. Opt. 1, 157 (1996).
[CrossRef] [PubMed]

Fujimoto, J. G.

Hee, M. R.

Jackson, D. A.

Jones, J. D. C.

Luke, D. G.

McBride, R.

Nakashima, T.

Podoleanu, A. Gh.

Seikau, S.

Shibata, N.

Tearney, D. J.

Tsubokawa, M.

Webb, D. J.

Youngquist, R. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the imaging procedure (see text for definitions). The inset shows the rays for which relation  (1) gives the path difference. Axes X and Z are in the plane of the drawing.

Fig. 2
Fig. 2

Spectra (left) and the temporal evolution (right) for a centered spot (top) and a spot shifted by δ=3 mm (bottom). x1=14.5 cm, x21=10.2 cm, and the X-scanner triangular drive signal has amplitude U=0.17 V and frequency F=20 Hz. The Y scanner is not driven.

Fig. 3
Fig. 3

Images obtained with a mirror as the target. For the X and Y triangular drive signals U=0.17 V, Fx=20 Hz, Fy=0.2 Hz, and δ=3 mm. The horizontal and vertical scales are (a) 50 and (b) 10 mV/division, respectively.

Fig. 4
Fig. 4

Fiber-tip image. For the X and Y triangular drive signals U=0.17 V, Fx=20 Hz, and Fy=0.2 Hz. The horizontal and vertical scales are 10 mV/division and δ=3 mm, respectively. (b) In vivo en-face image of the human retina. For the X and Y ramp drive signals U=1 V, Fx=300 Hz, and Fy=0.5 Hz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P-2δβ+f2z12z22β2.
ν=8kFxUλδ-4kUf2z12z22t,
νmin,max=νc±νn=8kFxUλδ±f2z12z22βm,
Bi=0.82FxDλΔXf2,
δ>z1z2f2lc+0.04D21/2.

Metrics