Abstract

We describe a compact all-solid-state continuous-wave singly resonant optical parametric oscillator (SRO) with a minimal pump-power requirement. The SRO is based on periodically poled LiNbO3 as the nonlinear material and is pumped by a 1-W diode-pumped Nd:YVO4 minilaser at 1.064 µm. By exploiting the intracavity pumping technique in a 50-mm crystal, we have achieved SRO operation threshold at a diode pump power of only 310 mW. At 1 W of input diode power, the SRO delivers 70 mW of output power in the nonresonant idler at 3.66 µm, at a photon conversion efficiency of 55%. Multiparameter tuning of the SRO yields a signal wavelength range from 1.45 to 1.60 µm and an idler wavelength range from 3.16 to 4.02 µm in the mid infrared. The device is characterized by robust turnkey operation and long-term amplitude-stable performance.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 713 (1996).
    [CrossRef] [PubMed]
  2. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 22, 75 (1997).
    [CrossRef] [PubMed]
  3. G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817 (1997).
    [CrossRef]
  4. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
    [CrossRef]
  5. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
    [CrossRef]
  6. The PPLN crystal was suppled by Crystal Technology, Inc., Palo Alto, Calif. 94303.
  7. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]

1998

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
[CrossRef]

1997

1996

Alexander, J. I.

Arvidsson, G.

Bosenberg, W. R.

Byer, R. L.

Colville, F. G.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 22, 75 (1997).
[CrossRef] [PubMed]

Drobshoff, A.

Dunn, M. H.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817 (1997).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 22, 75 (1997).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817 (1997).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 22, 75 (1997).
[CrossRef] [PubMed]

Edwards, T. J.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817 (1997).
[CrossRef]

Jundt, D. H.

Karlsson, H.

Laurell, F.

Myers, L. E.

Turnbull, G. A.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817 (1997).
[CrossRef]

Appl. Phys. Lett.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527 (1998).
[CrossRef]

Electron. Lett.

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817 (1997).
[CrossRef]

Opt. Lett.

Other

The PPLN crystal was suppled by Crystal Technology, Inc., Palo Alto, Calif. 94303.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the all-solid-state cw intracavity SRO with a 1-W laser diode as the primary pump source. L1, L2, lenses; M1M3, mirrors; BS, beam splitter.

Fig. 2
Fig. 2

Extracted idler power and the corresponding downconverted power of the cw SRO as a function of the input diode power. The solid curve is a best fit through the experimental data.

Fig. 3
Fig. 3

Wavelength coverage of the cw PPLN SRO with temperature and grating tuning. The grating periods corresponding to the curves range from 28.5 µm at the lower end of signal tuning range to 29.9 µm at the higher end of the signal tuning range (and vice versa over the idler tuning range).

Fig. 4
Fig. 4

Long-term amplitude stability and self-starting behavior (inset) of the SRO output. The peak-to-peak amplitude stability of the SRO is ±8% over 3 h, corresponding to a rms fluctuation of 5.6%.

Metrics