Abstract

The performance characteristics of a doubly (signal and idler) resonant continuous-wave optical parametric oscillator based on periodically poled lithium niobate and pumped by a 100-mW single-mode laser diode at 810 nm are reported. Pump power thresholds as low as 16 mW and wavelength tuning over the range 1.151.25 µm at the signal and 2.312.66 µm at the idler were achieved through variation of crystal temperature, pump wavelength, and grating period. Up to 5 mW of signal output was obtained with the single-mode diode pump, and signal powers of up to 39 mW were obtained when pumping with a 400-mW injection-locked broad-area diode laser.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
    [CrossRef]
  2. M. Scheidt, B. Beier, K.-J. Boller, and R. Wallenstein, Opt. Lett. 22, 1287 (1997).
    [CrossRef]
  3. L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
    [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
    [CrossRef]
  5. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  6. L. Goldberg, H. F. Taylor, and J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
    [CrossRef]
  7. I. D. Lindsay and M. Ebrahimzadeh, Appl. Opt. 37, 3961 (1998).
    [CrossRef]
  8. R. G. Smith, in Lasers: A Series of Advances, A. K. Levine and A. J. DeMaria, eds. (Marcel Dekker, New York, 1976), pp. 189–307.
  9. D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
    [CrossRef]
  10. A. J. Henderson, M. J. Padgett, J. Zhang, W. Sibbett, and M. H. Dunn, Opt. Lett. 20, 1029 (1995).
    [CrossRef]
  11. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  12. A. S. Arnold, J. S. Wilson, and M. G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998).
    [CrossRef]

1998

I. D. Lindsay and M. Ebrahimzadeh, Appl. Opt. 37, 3961 (1998).
[CrossRef]

A. S. Arnold, J. S. Wilson, and M. G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998).
[CrossRef]

1997

1995

1992

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

1985

L. Goldberg, H. F. Taylor, and J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998).
[CrossRef]

Beier, B.

Boller, K.-J.

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
[CrossRef]

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
[CrossRef]

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, and J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Henderson, A. J.

Jundt, D. H.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Knappe, R.

Lindsay, I. D.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
[CrossRef]

Padgett, M. J.

Pierce, J. W.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
[CrossRef]

Roberts, D. A.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Scheidt, M.

Sibbett, W.

Smith, R. G.

R. G. Smith, in Lasers: A Series of Advances, A. K. Levine and A. J. DeMaria, eds. (Marcel Dekker, New York, 1976), pp. 189–307.

Taylor, H. F.

L. Goldberg, H. F. Taylor, and J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Wallenstein, R.

Weller, J. F.

L. Goldberg, H. F. Taylor, and J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998).
[CrossRef]

Zhang, J.

Appl. Opt.

Appl. Phys. Lett.

L. Goldberg, H. F. Taylor, and J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Electron. Lett.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and J. W. Pierce, Electron. Lett. 31, 1869 (1995).
[CrossRef]

IEEE J. Quantum Electron.

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Rev. Sci. Instrum.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998).
[CrossRef]

Other

R. G. Smith, in Lasers: A Series of Advances, A. K. Levine and A. J. DeMaria, eds. (Marcel Dekker, New York, 1976), pp. 189–307.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Variation of maximum signal output power with incident pump power. Dashed line, linear fit to all data; solid curve, square-root variation fitted to the first ten data points.

Fig. 2
Fig. 2

Temperature tuning data taken with the injection-locked diode pump source, λp=808.7 nm, and grating periods of 21.0 µm , 21.2 µm , 21.4 µm , 21.6 µm , and 21.8 µm . The solid lines are calculated from the Sellmeier equations of Ref. 11.

Fig. 3
Fig. 3

Pump tuning data taken with both injection-locked and single-mode diode pump sources using a grating period of 21.2 µm at a temperature of 150 °C. The solid lines are calculated from the Sellmeier equations of Ref. 11.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PP,th=αsαi4l1-δ2πc4ε0nsniωpωsωideff21h¯mξ,B,
PsPpPp,th-Pp,th,  

Metrics