Abstract

We report on a theoretical analysis and experiments for bandwidth broadening in quasi-phase-matched (QPM) second-harmonic generation (SHG). We used phase-shifted segments of a periodic grating to obtain a spectrally broadened, nearly flat response simultaneously with high conversion efficiency. We used an x-cut MgO:LiNbO3 QPM waveguide in our analysis and experiments. The spectral range of the 850-nm fundamental for which SHG conversion exceeded 0.95 of the maximum value broadened from 0.02 to 0.12 nm when a 1-cm-long grating was divided into three segments with optimum phase shift. SHG conversion efficiency was 300%/W for this waveguide. The SHG efficiency and phase-matching characteristics showed good agreement with theoretical results.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mizuuchi, H. Ohta, K. Yamamoto, and M. Kato, Opt. Lett. 22, 1217 (1997).
    [CrossRef] [PubMed]
  2. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837 (1998).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  4. T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
    [CrossRef]
  5. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  6. S. Helmfrid and G. Arvidsson, J. Opt. Soc. Am. B 8, 797 (1991).
    [CrossRef]
  7. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
    [CrossRef]
  8. M. Fujimura, M. L. Bortz, and M. M. Fejer, in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), postdeadline paper 11.
  9. K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 33, 806 (1997).
    [CrossRef]

1998 (1)

1997 (2)

K. Mizuuchi, H. Ohta, K. Yamamoto, and M. Kato, Opt. Lett. 22, 1217 (1997).
[CrossRef] [PubMed]

K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 33, 806 (1997).
[CrossRef]

1995 (1)

1994 (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1991 (1)

1990 (1)

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Arvidsson, G.

Bortz, M. L.

M. Fujimura, M. L. Bortz, and M. M. Fejer, in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), postdeadline paper 11.

Bosenberg, W. R.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Edwards, T. J.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

M. Fujimura, M. L. Bortz, and M. M. Fejer, in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), postdeadline paper 11.

Fujimura, M.

M. Fujimura, M. L. Bortz, and M. M. Fejer, in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), postdeadline paper 11.

Helmfrid, S.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Karlsson, H.

Kato, M.

K. Mizuuchi, H. Ohta, K. Yamamoto, and M. Kato, Opt. Lett. 22, 1217 (1997).
[CrossRef] [PubMed]

K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 33, 806 (1997).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Laurell, F.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 33, 806 (1997).
[CrossRef]

K. Mizuuchi, H. Ohta, K. Yamamoto, and M. Kato, Opt. Lett. 22, 1217 (1997).
[CrossRef] [PubMed]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Myers, L. E.

Nishihara, H.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Ohta, H.

Pierce, J. W.

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Turnbull, G. A.

Yamamoto, K.

K. Mizuuchi, H. Ohta, K. Yamamoto, and M. Kato, Opt. Lett. 22, 1217 (1997).
[CrossRef] [PubMed]

K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 33, 806 (1997).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Electron. Lett. (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 33, 806 (1997).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Other (1)

M. Fujimura, M. L. Bortz, and M. M. Fejer, in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), postdeadline paper 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Model of the QPM grating with aperiodic domains; vertical arrows, alternating directions of the d coefficient.

Fig. 2
Fig. 2

Dependence of the normalized SH intensity of a three-segmented QPM structure on the normalized mismatch LΔ for various phase shifts of δ. The tuning curves are (a) δ1/Λ=0.5, L1/L=0.105; (b) δ1/Λ=0.4, L1/L=0.134; and (c) δ1/Λ=0.35, L1/L=0.179; where δ1+δ2=Λ, L1=L2, and the length of L1 is designed to yield the optimum flat-peaked response.

Fig. 3
Fig. 3

Dependence of the normalized flat-peaked bandwidth and the conversion efficiency on the total length, showing the calculated flat-peaked bandwidth and conversion efficiency of (a), (b) a three-segmented QPM structure and (c), (d) a two-segmented QPM structure.

Fig. 4
Fig. 4

Measured SHG power as a function of fundamental wavelength in a three-segmented QPM structure with a 3.23µm period. Solid curve, calculated results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dE2zdz=iωn2cE12dzexp-iΔkz,

Metrics