Abstract

Three-dimensional topometry is supplemented with ellipsometric measurements on the same pixel raster for calculation of the phase of the reflected waves and correction of the height fields. Lateral resolution is <1 µm. The ellipsometric angles are determined by phase shifting and contrast evaluation. Three-dimensional fields of the ellipsometric angles, the real and the imaginary parts of the refractive index, and the corrected topography of the heights are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Leonhardt, H.-J. Jordan, and H. J. Tiziani, Opt. Commun. 80, 205 (1991).
    [CrossRef]
  2. C. W. See, M. G. Somekh, and R. D. Holmes, Appl. Opt. 35, 6663 (1996).
    [CrossRef] [PubMed]
  3. G. D. Feke, D. P. Snow, R. D. Grober, P. J. de Groot, and L. Deck, Appl. Opt. 37, 1796 (1998).
    [CrossRef]
  4. K. Leonhardt, U. Droste, and H. J. Tiziani, Appl. Opt. 33, 7477 (1994).
    [CrossRef] [PubMed]
  5. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1992).
  6. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  7. K. Leonhardt and H. J. Tiziani, “Optical topometry of surfaces with locally changing materials, layers, and contaminations,” J. Mod. Opt. (to be published).

1998 (1)

1996 (1)

1994 (1)

1991 (1)

K. Leonhardt, H.-J. Jordan, and H. J. Tiziani, Opt. Commun. 80, 205 (1991).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1992).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1992).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

de Groot, P. J.

Deck, L.

Droste, U.

Feke, G. D.

Grober, R. D.

Holmes, R. D.

Jordan, H.-J.

K. Leonhardt, H.-J. Jordan, and H. J. Tiziani, Opt. Commun. 80, 205 (1991).
[CrossRef]

Leonhardt, K.

K. Leonhardt, U. Droste, and H. J. Tiziani, Appl. Opt. 33, 7477 (1994).
[CrossRef] [PubMed]

K. Leonhardt, H.-J. Jordan, and H. J. Tiziani, Opt. Commun. 80, 205 (1991).
[CrossRef]

K. Leonhardt and H. J. Tiziani, “Optical topometry of surfaces with locally changing materials, layers, and contaminations,” J. Mod. Opt. (to be published).

See, C. W.

Snow, D. P.

Somekh, M. G.

Tiziani, H. J.

K. Leonhardt, U. Droste, and H. J. Tiziani, Appl. Opt. 33, 7477 (1994).
[CrossRef] [PubMed]

K. Leonhardt, H.-J. Jordan, and H. J. Tiziani, Opt. Commun. 80, 205 (1991).
[CrossRef]

K. Leonhardt and H. J. Tiziani, “Optical topometry of surfaces with locally changing materials, layers, and contaminations,” J. Mod. Opt. (to be published).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Appl. Opt. (3)

Opt. Commun. (1)

K. Leonhardt, H.-J. Jordan, and H. J. Tiziani, Opt. Commun. 80, 205 (1991).
[CrossRef]

Other (3)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1992).

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

K. Leonhardt and H. J. Tiziani, “Optical topometry of surfaces with locally changing materials, layers, and contaminations,” J. Mod. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical arrangement of the EHT: MO, microscope objective; G, grating; SF, spatial filter; P, Polarizer; A, analyzer; S, light source; other abbreviations defined in text.

Fig. 2
Fig. 2

Test object to be measured. The substrate is quartz glass. Ti, adhesive layer; Au, gold layer.

Fig. 3
Fig. 3

Topographies of ellipsometric angles Ψ and Δ and of the complex refractive index Nreal=n and absorption coefficient Nimag=k.

Fig. 4
Fig. 4

Cross sections of the topography of the measured heights Hmx,y (Hm) and the corrected heights hcorrx,y (Hcorr).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ix,y,U1+Vk2x,yρx,y2+2Vkx,yρx,y×cosΔx,y+Δx,y+ΦPSU,
ρx,y=rpx,yrsx,y=tanx,yexpiΔx,y,
Δ=arctanI-3π/4+I-π/4-Iπ/4-I3π/4I-π/4+Iπ/4-I-3π/4-I3π/4.
K=Imax-IminImax+Imin=2I3π/4-I-π/42+I-3π/4-Iπ/421/2I3π/4+I-π/4+I-3π/4+Iπ/4=2ρVk1+ρ2Vk2,
ρ=1Vk1K±1/K2-1=tan Ψ.
Nx,y=N0 tan ϕ01-4ρ1+ρ2sin2 ϕ00.5.
hx,y=Hx,y-p4π sin ϕ0argE0*M+*M-E0,

Metrics