Abstract

The evolution of an optical pulse in a strongly dispersion-managed fiber-optic communication system is studied. The pulse is decomposed into a fast phase and a slowly evolving amplitude. The fast phase is calculated exactly, and a nonlocal equation for the evolution of the amplitude is derived. In the limit of weak dispersion management the equation reduces to the nonlinear Schrödinger equation. A class of stationary solutions of this equation is obtained; they represent pulses with a Gaussian-like core and exponentially decaying oscillatory tails, and they agree with direct numerical solutions of the full system.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and Y. Kodama, Opt. Lett. 15, 1443 (1990); Opt. Lett. 16, 1385 (1991); I. R. Gabitov and S. K. Turitsyn, Opt. Lett. 21, 327 (1996).
    [CrossRef] [PubMed]
  2. T.-S. Yang and W. L. Kath, Opt. Lett. 22, 985 (1997).
    [CrossRef] [PubMed]
  3. Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).
    [CrossRef]
  4. T.-S. Yang, W. L. Kath, and S. K. Turitsyn, Opt. Lett. 23, 597 (1998).
    [CrossRef]
  5. N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
    [CrossRef] [PubMed]
  6. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
    [CrossRef]
  7. J. N. Kutz and S. G. Evangelides, Opt. Lett. 23, 685 (1998); J. N. Kutz, P. Holmes, S. G. Evangelides, and J. P. Gordon, J. Opt. Soc. Am. B 15, 87 (1998); V. S. Grigoryan and C. R. Menyuk, Opt. Lett. 23, 609 (1998).
    [CrossRef]
  8. S. K. Turitsyn, Sov. Phys. JETP Lett. 65, 845 (1997).
    [CrossRef]
  9. I. R. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Opt. Commun. 134, 31 (1997); S. K. Turitsyn and E. G. Shapiro, Opt. Lett. 23, 682 (1998).
    [CrossRef]

1998 (2)

1997 (5)

S. K. Turitsyn, Sov. Phys. JETP Lett. 65, 845 (1997).
[CrossRef]

I. R. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Opt. Commun. 134, 31 (1997); S. K. Turitsyn and E. G. Shapiro, Opt. Lett. 23, 682 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

T.-S. Yang and W. L. Kath, Opt. Lett. 22, 985 (1997).
[CrossRef] [PubMed]

Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).
[CrossRef]

1996 (1)

1990 (1)

Doran, N. J.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

Evangelides, S. G.

Forysiak, W.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

Gabitov, I. R.

I. R. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Opt. Commun. 134, 31 (1997); S. K. Turitsyn and E. G. Shapiro, Opt. Lett. 23, 682 (1998).
[CrossRef]

Hasegawa, A.

Kath, W. L.

Knox, F. M.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

Kodama, Y.

Kumar, S.

Kutz, J. N.

Maruta, A.

Nijhof, J. H. B.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

Shapiro, E. G.

I. R. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Opt. Commun. 134, 31 (1997); S. K. Turitsyn and E. G. Shapiro, Opt. Lett. 23, 682 (1998).
[CrossRef]

Smith, N. J.

Turitsyn, S. K.

T.-S. Yang, W. L. Kath, and S. K. Turitsyn, Opt. Lett. 23, 597 (1998).
[CrossRef]

I. R. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Opt. Commun. 134, 31 (1997); S. K. Turitsyn and E. G. Shapiro, Opt. Lett. 23, 682 (1998).
[CrossRef]

S. K. Turitsyn, Sov. Phys. JETP Lett. 65, 845 (1997).
[CrossRef]

Yang, T.-S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Shape of the stationary pulses in the Fourier and temporal domains for s=1 and λ=4.

Fig. 2
Fig. 2

Shape of the stationary pulses in the temporal domain for λ=1 and various values of s.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

iuz+1/2Dzutt+u2u=0,
uζ,Z,t=u0ζ,Z,t+zau1ζ,Z,t+.
Funiuζn+1/2Δζuttn=-Pnu0,u1,,un-1,
uˆ0ζ,Z,ω=UˆZ,ωpˆCζ,ω,
iUˆZ-12δaω2Uˆ+-+dω1dω2UˆZ,ω+ω1×UˆZ,ω+ω2Uˆ*Z,ω+ω1+ω2rω1ω2=0,
iUZ+12δaUtt+-+dt1dt2UZ,t+t1×UZ,t+t2U*Z,t+t1+t2Rt1,t2=0,
λ2+δaω2Fω=2-+dω1dω2Fω+ω1Fω+ω2×Fω+ω1+ω2rω1ω2.

Metrics