Abstract

Using coupled-mode theory, we develop a theoretical model to analyze the effects of fiber spin profiles on polarization mode dispersion (PMD). Constant, sinusoidal, and frequency-modulated spin profiles are examined, and phase-matching conditions are analyzed. Our analysis shows that PMD can be reduced effectively by use of frequency-modulated spin profiles.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Kapron, N. F. Borrelli, and D. B. Keck, IEEE J. Quantum Electron. QE–28, 222 (1972).
    [CrossRef]
  2. S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
    [CrossRef]
  3. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, Appl. Opt. 20, 2962 (1981).
    [CrossRef] [PubMed]
  4. A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permanent spin,” U.S. patent5,298,047 (March29, 1994).
  5. R. Dandliker, in Anisotropic and Nonlinear Optical Waveguides, C. G. Someda and G. Stegeman, eds. (Elsevier, New York, 1992), p. 39.
    [CrossRef]

1983 (1)

S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
[CrossRef]

1981 (1)

1972 (1)

K. P. Kapron, N. F. Borrelli, and D. B. Keck, IEEE J. Quantum Electron. QE–28, 222 (1972).
[CrossRef]

Barlow, A. J.

Borrelli, N. F.

K. P. Kapron, N. F. Borrelli, and D. B. Keck, IEEE J. Quantum Electron. QE–28, 222 (1972).
[CrossRef]

Dandliker, R.

R. Dandliker, in Anisotropic and Nonlinear Optical Waveguides, C. G. Someda and G. Stegeman, eds. (Elsevier, New York, 1992), p. 39.
[CrossRef]

Hart, A. C.

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permanent spin,” U.S. patent5,298,047 (March29, 1994).

Huff, R. G.

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permanent spin,” U.S. patent5,298,047 (March29, 1994).

Kapron, K. P.

K. P. Kapron, N. F. Borrelli, and D. B. Keck, IEEE J. Quantum Electron. QE–28, 222 (1972).
[CrossRef]

Keck, D. B.

K. P. Kapron, N. F. Borrelli, and D. B. Keck, IEEE J. Quantum Electron. QE–28, 222 (1972).
[CrossRef]

Payne, D. N.

Ramskov-Hansen, J. J.

Rashleigh, S. C.

S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
[CrossRef]

Walker, K. L.

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permanent spin,” U.S. patent5,298,047 (March29, 1994).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. P. Kapron, N. F. Borrelli, and D. B. Keck, IEEE J. Quantum Electron. QE–28, 222 (1972).
[CrossRef]

J. Lightwave Technol. (1)

S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
[CrossRef]

Other (2)

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permanent spin,” U.S. patent5,298,047 (March29, 1994).

R. Dandliker, in Anisotropic and Nonlinear Optical Waveguides, C. G. Someda and G. Stegeman, eds. (Elsevier, New York, 1992), p. 39.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PMD reduction factor as a function of spin amplitude for constant and sinusoidal spin.

Fig. 2
Fig. 2

Phase-matching diagram for a sinusoidal spin with a spin amplitude of 3 turns/m.

Fig. 3
Fig. 3

Comparison of FM, sinusoidal, and constant spin.

Fig. 4
Fig. 4

Amount of light coupled from the fast axis in the initial section to the fast axis in the final section after traversing the spun section.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ex,y,z=A1ze1x,yexp-iβz+A2ze2x,yexp-iβz,
ddzA1A2=iκA1A2,
κ=012Δβ0expi20zαzdz12Δβ0exp-i20zαzdz0,
Mz=A1z-A2*zA2zA1*z,
τ=2zdA1zdω2+dA2zdω21/2.
α=α0 sin2πf0z+fm sin2πz/Λ,

Metrics