Abstract

We predict theoretically that electromagnetic resonances supported by surface defects can be detected experimentally by study of the scattering of electromagnetic pulses from these defects, and we formulate the optimal conditions for such experiments. Numerical scattering simulations confirm that the proposed scattering probes unambiguously identify resonance signatures. The approach that we suggest proves to be superior to conventional analysis of features in the dependence of the far-field intensity of scattered monochromatic light on its frequency, since these features do not necessarily point at resonant frequencies.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
Internal and scattered time-dependent intensity of a dielectric sphere illuminated with a pulsed Gaussian beam

Elsayed Esam M. Khaled, Dipakbin Q. Chowdhury, Steven C. Hill, and Peter W. Barber
J. Opt. Soc. Am. A 11(7) 2065-2071 (1994)

Time dependence of internal intensity of a dielectric sphere on and near resonance

Dipakbin Q. Chowdhury, Steven C. Hill, and Peter W. Barber
J. Opt. Soc. Am. A 9(8) 1364-1373 (1992)

Resonant scattering of surface-plasmon polariton pulses by nanoscale metal defects

José A. Sánchez-Gil and Alexei A. Maradudin
Opt. Lett. 28(22) 2255-2257 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription