Abstract

We have constructed a 26-fs chirped-pulse amplifier that incorporates a programmable liquid-crystal spatial light modulator in the pulse stretcher. The modulator serves a dual purpose. First, we apply frequency-dependent phase shifts to compensate for cubic, quartic, and nonlinear phase dispersion in the amplifier, which results in a reduction in pulse duration from 32 to 26  fs, in agreement with the transform limit of the amplified pulse spectrum. Second, we are able to produce high-fidelity compressed amplified shaped pulses by applying phase masks directly within the stretcher. Shaped pulse energies of greater than 1  mJ are routinely obtained.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, Opt. Lett. 23, 525 (1998).
    [CrossRef]
  2. S. Backus, C. G. Durfee, G. Mourou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 22, 1256 (1997).
    [CrossRef] [PubMed]
  3. A. Sullivan and W. E. White, Opt. Lett. 20, 192 (1995).
    [CrossRef] [PubMed]
  4. M. Lenzner, Ch. Spielmann, E. Wintner, F. Krausz, and A. J. Schmidt, Opt. Lett. 20, 1397 (1995).
    [CrossRef] [PubMed]
  5. D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
    [CrossRef]
  6. M. A. Dugan, J. X. Tull, and W. S. Warren, J. Opt. Soc. Am. B 14, 2348 (1997).
    [CrossRef]
  7. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  8. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
    [CrossRef]
  9. A. Efimov, C. Schaffer, and D. H. Reitze, J. Opt. Soc. Am. B 12, 1968 (1995).
    [CrossRef]
  10. C. C. Chang, H. P. Sardesai, and A. M. Weiner, Opt. Lett. 23, 283 (1998).
    [CrossRef]
  11. D. W. Schumacher, J. H. Hoogenraad, D. Pinkos, and P. H. Bucksbaum, Phys. Rev. A 52, 4719 (1995).
    [CrossRef] [PubMed]
  12. D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
    [CrossRef] [PubMed]
  13. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
    [CrossRef] [PubMed]
  14. A. Braun, S. Kane, and T. Norris, Opt. Lett. 22, 615 (1997).
    [CrossRef] [PubMed]
  15. A. M. Weiner and D. E. Leaird, Opt. Lett. 15, 51 (1990).
    [CrossRef] [PubMed]
  16. M. M. Wefers and K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
    [CrossRef]
  17. A. Efimov and D. H. Reitze, Proc. SPIE 2701, 190 (1996).
    [CrossRef]

1998 (2)

1997 (3)

1996 (1)

A. Efimov and D. H. Reitze, Proc. SPIE 2701, 190 (1996).
[CrossRef]

1995 (5)

1994 (1)

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef]

1990 (2)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

A. M. Weiner and D. E. Leaird, Opt. Lett. 15, 51 (1990).
[CrossRef] [PubMed]

1988 (1)

Aoyama, M.

Backus, S.

Barty, C. P. J.

Braun, A.

Bucksbaum, P.

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Bucksbaum, P. H.

D. W. Schumacher, J. H. Hoogenraad, D. Pinkos, and P. H. Bucksbaum, Phys. Rev. A 52, 4719 (1995).
[CrossRef] [PubMed]

Chang, C. C.

Dugan, M. A.

Durfee, C. G.

Efimov, A.

Esarey, E.

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

Fittinghoff, D.

Heritage, J. P.

Hoogenraad, J. H.

D. W. Schumacher, J. H. Hoogenraad, D. Pinkos, and P. H. Bucksbaum, Phys. Rev. A 52, 4719 (1995).
[CrossRef] [PubMed]

Kane, S.

Kapteyn, H. C.

Kim, J.

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

Kirschner, E. M.

Kohler, B.

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Krausz, F.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef]

A. M. Weiner and D. E. Leaird, Opt. Lett. 15, 51 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Lenzner, M.

Matsuoka, S.

Mourou, G.

Murnane, M. M.

Nelson, K. A.

M. M. Wefers and K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Norris, T.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef]

Pinkos, D.

D. W. Schumacher, J. H. Hoogenraad, D. Pinkos, and P. H. Bucksbaum, Phys. Rev. A 52, 4719 (1995).
[CrossRef] [PubMed]

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Reitze, D. H.

Sardesai, H. P.

Schaffer, C.

Schmidt, A. J.

Schumacher, D.

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Schumacher, D. W.

D. W. Schumacher, J. H. Hoogenraad, D. Pinkos, and P. H. Bucksbaum, Phys. Rev. A 52, 4719 (1995).
[CrossRef] [PubMed]

Spielmann, Ch.

Squier, J.

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Sullivan, A.

Takuma, H.

Tull, J. X.

Umstadter, D.

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

Warren, W. S.

Wefers, M. M.

Weiner, A. M.

C. C. Chang, H. P. Sardesai, and A. M. Weiner, Opt. Lett. 23, 283 (1998).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

A. M. Weiner and D. E. Leaird, Opt. Lett. 15, 51 (1990).
[CrossRef] [PubMed]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
[CrossRef]

White, W. E.

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Wilson, K. R.

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Wintner, E.

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef]

Yakovlev, V. V.

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Yamakawa, K.

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992); M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Lett. (7)

Phys. Rev. A (1)

D. W. Schumacher, J. H. Hoogenraad, D. Pinkos, and P. H. Bucksbaum, Phys. Rev. A 52, 4719 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Efimov and D. H. Reitze, Proc. SPIE 2701, 190 (1996).
[CrossRef]

Science (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Other (1)

D. Pinkos, J. Squier, D. Schumacher, P. Bucksbaum, B. Kohler, V. V. Yakovlev, and K. R. Wilson, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 180.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Autocorrelation trace of a 1-mJ amplified pulse when the optimal phase is loaded into the SLM (solid curve). When no phase compensation is performed, a longer pulse results (dashed curve). The effect of phase compensation is more dramatic in an unpumped amplifier (right-hand inset), indicating the presence of gain narrowing during amplification. The left-hand inset shows the amplified pulse spectrum (solid curve) compared with the seed pulse spectrum at the amplifier output (dashed curve).

Fig. 2
Fig. 2

Autocorrelation of the amplified odd pulse (filled circles). A theoretical autocorrelation (solid curve) is shown for comparison.

Fig. 3
Fig. 3

Autocorrelations of 8- and 15-THz pulse trains produced with binary M3-sequence masking in the stretcher (solid curves). Numerically simulated traces (dashed curves) are shown offset from the experimental data.

Fig. 4
Fig. 4

Effect of Fourier-domain phase compensation on the output pulse. (a) We used the experimentally found values of cubic and quartic phase to confirm that spatiotemporal effects are small in this case. (b) The amount of compensated cubic phase is increased to 80,000 fs3 to show the dramatic deformation of the output pulse. The innermost contour corresponds to a 90% level of field amplitude with 20% steps between contours.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΦSLMω=12!d2Φdω2ω-ω02+13!d3Φdω3ω-ω03+14!d4Φdω4ω-ω04+ΦNLω-ω0,

Metrics