Abstract

We present a novel procedure for vibrationally resolved sum-frequency generation (SFG) in which a broad-bandwidth IR pulse is mixed with a narrow-bandwidth visible pulse. The resultant SFG spectrum is dispersed with a spectrograph and detected in parallel with a scientific-grade CCD detector, permitting rapid and high signal-to-noise ratio data acquisition over a 400cm-1 spectral region without scanning the IR frequency. Application to the study of a self-assembled monolayer of octadecanethiol is discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, Chem. Phys. Lett. 133, 189 (1987); P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1988).
    [CrossRef]
  2. Y. R. Shen, Nature (London) 337, 519 (1989); C. D. Bain, J. Chem. Soc. Farady Trans. 91, 1281 (1995); G. L. Richmond, Anal. Chem. 69, A536 (1997).
    [CrossRef]
  3. Clark MXR Models IR-OPA and CPA 1000.
  4. We identify certain commercial equipment, instruments, or materials in this Letter to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  5. A Gaussian temporal shape was assumed to deconvolute all autocorrelation and cross-correlation measurements.
  6. All reported stability measurements are 2? based on 1000–shot averages.
  7. F. Seifert, V. Petrov, and M. Woerner, Opt. Lett. 19, 2009 (1994).
    [CrossRef] [PubMed]
  8. All reported beam dimensions are 1/e2-intensity diameters.
  9. Princeton Instruments Model LN/CCD-1100PB detector with an ST 138 controller.
  10. A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
    [CrossRef] [PubMed]
  11. E. W. M. van der Ham, Q. H. F. Vrehen, and E. R. Eliel, Opt. Lett. 21, 1448 (1996).
    [CrossRef] [PubMed]

1996 (1)

1994 (1)

1989 (1)

Y. R. Shen, Nature (London) 337, 519 (1989); C. D. Bain, J. Chem. Soc. Farady Trans. 91, 1281 (1995); G. L. Richmond, Anal. Chem. 69, A536 (1997).
[CrossRef]

1987 (2)

A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
[CrossRef] [PubMed]

J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, Chem. Phys. Lett. 133, 189 (1987); P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1988).
[CrossRef]

Chidsey, C. E. D.

A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
[CrossRef] [PubMed]

Eliel, E. R.

Guyot-Sionnest, P.

J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, Chem. Phys. Lett. 133, 189 (1987); P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1988).
[CrossRef]

Harris, A. L.

A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
[CrossRef] [PubMed]

Hunt, J. H.

J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, Chem. Phys. Lett. 133, 189 (1987); P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1988).
[CrossRef]

Levinos, N. J.

A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
[CrossRef] [PubMed]

Loiacono, D. N.

A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
[CrossRef] [PubMed]

Petrov, V.

Seifert, F.

Shen, Y. R.

Y. R. Shen, Nature (London) 337, 519 (1989); C. D. Bain, J. Chem. Soc. Farady Trans. 91, 1281 (1995); G. L. Richmond, Anal. Chem. 69, A536 (1997).
[CrossRef]

J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, Chem. Phys. Lett. 133, 189 (1987); P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1988).
[CrossRef]

van der Ham, E. W. M.

Vrehen, Q. H. F.

Woerner, M.

Chem. Phys. Lett. (2)

J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, Chem. Phys. Lett. 133, 189 (1987); P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1988).
[CrossRef]

A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, Chem. Phys. Lett. 141, 350 (1987); C. D. Bain, P. B. Davies, T. Hui Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563 (1991); M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995); M. S. Yeganeh, S. M. Dougal, R. S. Polizzotti, and P. Rabinowitz, Phys. Rev. Lett. 74, 1811 (1995).
[CrossRef] [PubMed]

Nature (London) (1)

Y. R. Shen, Nature (London) 337, 519 (1989); C. D. Bain, J. Chem. Soc. Farady Trans. 91, 1281 (1995); G. L. Richmond, Anal. Chem. 69, A536 (1997).
[CrossRef]

Opt. Lett. (2)

Other (6)

Clark MXR Models IR-OPA and CPA 1000.

We identify certain commercial equipment, instruments, or materials in this Letter to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

A Gaussian temporal shape was assumed to deconvolute all autocorrelation and cross-correlation measurements.

All reported stability measurements are 2? based on 1000–shot averages.

All reported beam dimensions are 1/e2-intensity diameters.

Princeton Instruments Model LN/CCD-1100PB detector with an ST 138 controller.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the optical system. DFG, different-frequency generator. See text for other definitions.

Fig. 2
Fig. 2

SFG spectrum of a Au film covered with SAM’s of (a) d-ODT and (b) ODT and (c) the ratio (b)/(a). The spectra were recorded in 60  s with p–polarized IR and visible incident beams and p-polarized detection of the SF. The visible bandwidth was 4.8 cm-1. Traces (a) and (b) are offset vertically; a line indicating the zero signal is shown for each.

Metrics