Abstract

The fourth-harmonic generation of broadband 243-nm radiation is reported. The broadband radiation is achieved by implementation of a multicrystal design to overcome spectral bandwidth limitations, and a plane-wave analysis is developed that shows increased spectral bandwidths for these designs. The fourth harmonic of a Cr:LiSAF laser operating at 972  nm is generated in beta-barium borate (BBO). The results demonstrate a spectral bandwidth at 243  nm more than five times broader than that which is expected from a single BBO crystal of equivalent length.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Hofmann, K. Mossavi, and F. K. Tittel, Opt. Lett. 17, 1691 (1992).
    [CrossRef]
  2. R. A. Cheville, M. T. Reitan, and N. J. Halas, Opt. Lett. 17, 1343 (1992).
    [CrossRef]
  3. O. E. Matinez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  4. D. Eimerl, J. M. Auerbach, C. E. Barker, and D. Milam, Opt. Lett. 22, 1208 (1997).
    [CrossRef] [PubMed]
  5. K. Mori, Y. Tamaki, M. Obara, and K. Midorikawa, J. Appl. Phys. 83, 2915 (1998).
    [CrossRef]
  6. A. V. Smith, D. J. Armstrong, and W. J. Alford, J. Opt. Soc. Am. B 15, 122 (1998).
    [CrossRef]
  7. A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, Opt. Lett. 23, 927 (1998).
    [CrossRef]
  8. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

1998 (3)

1997 (1)

1992 (2)

1989 (1)

O. E. Matinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Alford, W. J.

Armstrong, D. J.

Auerbach, J. M.

Babushkin, A.

Barker, C. E.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

Cheville, R. A.

Craxton, R. S.

Eimerl, D.

Guardalben, M. J.

Halas, N. J.

Hofmann, Th.

Keck, R. L.

Matinez, O. E.

O. E. Matinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Midorikawa, K.

K. Mori, Y. Tamaki, M. Obara, and K. Midorikawa, J. Appl. Phys. 83, 2915 (1998).
[CrossRef]

Milam, D.

Mori, K.

K. Mori, Y. Tamaki, M. Obara, and K. Midorikawa, J. Appl. Phys. 83, 2915 (1998).
[CrossRef]

Mossavi, K.

Obara, M.

K. Mori, Y. Tamaki, M. Obara, and K. Midorikawa, J. Appl. Phys. 83, 2915 (1998).
[CrossRef]

Oskoui, S.

Reitan, M. T.

Seka, W.

Smith, A. V.

Tamaki, Y.

K. Mori, Y. Tamaki, M. Obara, and K. Midorikawa, J. Appl. Phys. 83, 2915 (1998).
[CrossRef]

Tittel, F. K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the 243-nm source. A Cr:LiSAF Q-switched laser (Q-SW) is used to generate radiation at 972  nm. The broadband 972-nm radiation is then frequency quadrupled in two successive multicrystal type  I BBO SHG processes. M’s, mirrors; OC, output coupler; BFT, birefringent tuner; BS’s, beam splitters.

Fig. 2
Fig. 2

Measured spectral bandwidth of the 972-nm source from the Cr:LiSAF laser. This curve shows a measured bandwidth of 1.2  nm (FWHM). Also shown is the calculated efficiency curve for the SHG process in a 1.5-cm-long BBO crystal, normalized to the peak of the measured curve. This result shows that the spectral acceptance for the BBO crystal is slightly less than the measured spectral bandwidth of the 972-nm source. The third curve (normalized with the same factor that is used for the bulk crystal) shows the calculated efficiency curve for six 0.25-cm-long BBO crystals in series. This result shows that the six cascaded crystals are expected to convert across the entire spectrum of the input 972-nm radiation.

Fig. 3
Fig. 3

Measured spectral bandwidth of the 486-nm output radiation from the first multicrystal BBO SHG. Also shown is the calculated conversion efficiency for the 486-to-243-nm SHG process in a single 0.9-cm-long BBO crystal. This result shows that the spectral acceptance of a bulk BBO crystal is much narrower than the spectral bandwidth of the input 486-nm radiation.

Fig. 4
Fig. 4

Measured spectral bandwidth of the 243-nm output radiation. Also shown is the calculated conversion efficiency for the SHG conversion of the 486-nm radiation into 243-nm radiation in a single 0.9-cm-long BBO crystal. This result demonstrates that the use of the multicrystal design has increased the gain bandwidth of the conversion process by more than a factor of 5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η=ω2deff2n2c2L2Iω sinc2Δkω,θL2,
ddzE˜o,2ωz=iωdeffncE˜o,ωE˜o,ω exp-iΔkω,θz,
E˜o,2ωLN=iωdeffncE˜o,ωE˜o,ωn=1N exp-iΔknω,θLn2×sincΔknω,θLn2exp-iψ, ψ=m=nNΔkmω,θLm.

Metrics