Abstract

We propose a new approach, forward-scattering holography with a filter, to holographic particle velocimetry for significant improvement in terms of increased effective aperture, modest laser power requirement, simple geometric setup, improved signal-to-noise ratio, and higher seeding density. We achieve this result by using a smooth (Guassian-like) high-pass filter during recording.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
    [CrossRef]
  2. L. W. Weinstein, G. B. Beeler, and A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).
  3. H. Meng and F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
    [CrossRef]
  4. D. H. Barnhart, R. J. Adrian, and G. C. Papen, Appl. Opt. 33, 7159 (1994).
    [CrossRef] [PubMed]
  5. R. J. Adrian, Appl. Opt. 25, 3855 (1986).
    [CrossRef] [PubMed]
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  7. S. Menon, (University of Houston, Houston, Tex., to be published).
  8. H. Meng, “Development of holographic particle velocimetry techniques for three-dimensional vortical flows,” Ph.D. dissertation (University of Houston, Houston, Tex., 1994).
  9. C. Gray and C. A. Greated, Proc. SPIE 2005, 636 (1993).
    [CrossRef]
  10. H. Meng and F. Hussain, Appl. Opt. 34, 1827 (1995).
    [CrossRef] [PubMed]

1995 (1)

1994 (1)

1993 (2)

S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
[CrossRef]

C. Gray and C. A. Greated, Proc. SPIE 2005, 636 (1993).
[CrossRef]

1991 (1)

H. Meng and F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

1986 (1)

Adrian, R. J.

Barnhart, D. H.

Beeler, G. B.

L. W. Weinstein, G. B. Beeler, and A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Gray, C.

C. Gray and C. A. Greated, Proc. SPIE 2005, 636 (1993).
[CrossRef]

Greated, C. A.

C. Gray and C. A. Greated, Proc. SPIE 2005, 636 (1993).
[CrossRef]

Hussain, F.

H. Meng and F. Hussain, Appl. Opt. 34, 1827 (1995).
[CrossRef] [PubMed]

S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
[CrossRef]

H. Meng and F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

Linderman, A. M.

L. W. Weinstein, G. B. Beeler, and A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

Liu, D.

S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
[CrossRef]

Meng, H.

H. Meng and F. Hussain, Appl. Opt. 34, 1827 (1995).
[CrossRef] [PubMed]

S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
[CrossRef]

H. Meng and F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

H. Meng, “Development of holographic particle velocimetry techniques for three-dimensional vortical flows,” Ph.D. dissertation (University of Houston, Houston, Tex., 1994).

Menon, S.

S. Menon, (University of Houston, Houston, Tex., to be published).

Papen, G. C.

Simmons, S.

S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
[CrossRef]

Weinstein, L. W.

L. W. Weinstein, G. B. Beeler, and A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

Appl. Opt. (3)

Fluid Dyn. Res. (1)

H. Meng and F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

Proc. SPIE (2)

S. Simmons, H. Meng, F. Hussain, and D. Liu, Proc. SPIE 2005, 306 (1993).
[CrossRef]

C. Gray and C. A. Greated, Proc. SPIE 2005, 636 (1993).
[CrossRef]

Other (4)

L. W. Weinstein, G. B. Beeler, and A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

S. Menon, (University of Houston, Houston, Tex., to be published).

H. Meng, “Development of holographic particle velocimetry techniques for three-dimensional vortical flows,” Ph.D. dissertation (University of Houston, Houston, Tex., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the recording system: A, fluid volume; B, D, lenses; C, filter; E, G, mirrors; F, beam splitter; H, hologram.

Fig. 2
Fig. 2

Intensity contour plot of the calculated particle (modeled as an opaque disk of diameter d ) image as a function of radial and axial distances (δr and δz) from the image center:  (a) forward scattering off axis without a filter, (b) FHF; λ=514.5 nm, d=21.7 µm, B/da=0.75.

Fig. 3
Fig. 3

Particle-image intensity (normalized by the maximum) versus aperture half-angle φ used in reconstruction.

Fig. 4
Fig. 4

SNR versus seeding density for in-line HPV, IROV,9 and FHF. The thickness of the fluid field is 80 mm for IROV and 20 mm for others.

Fig. 5
Fig. 5

SNR versus thickness of particle suspension for in-line HPV and FHF. The seeding density is 40 mm-3 for FHF and 6 mm-3 for in-line HPV.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ψu,v,zexpiku2+v22zPs,t*ϕs,t;
Ps,t=As,t exp-iks2+t22z0, ϕs,t=ikz12πz02exp-ikz1s2+t22z02, z1=zz0z0-z, s=z0zu, t=z0zν,
tfx,y=1-exp-x2+y2/2B2
ϕfs,t=ϕs,t-k212B2+ik2z14πz02k24z12+14B4×exp[-k212B2+ik2z14πz02k24z12+14B4].

Metrics