Abstract

A high-efficiency guided-mode resonance reflection filter is reported. The device consists of a surface-relief photoresist grating and an underlying HfO2 waveguide layer deposited on a fused-silica substrate. The spectral response measured with a dye-laser beam at normal incidence exhibited a peak reflectance of 98% at a wavelength of 860 nm with sideband reflectance below 5% extending over the wavelength range provided by the dye (800–900 nm). At normal incidence the filter linewidth was 2.2 nm. High-efficiency double-peak resonances occurred at nonnormal incidence, with the spectral locations of the maxima vayring with the incidence angle. The filter response at various angles of incidence agreed well with the theoretically calculated reflectance curves.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
    [CrossRef]
  2. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
    [CrossRef]
  3. T. Tamir and S. Zhang, J. Opt. Soc. Am. A 14, 1607 (1997).
    [CrossRef]
  4. S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
    [CrossRef] [PubMed]
  5. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
    [CrossRef]
  6. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  7. S. S. Wang and R. Magnusson, Appl. Opt. 34, 2414 (1995).
    [CrossRef] [PubMed]
  8. A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997), pp. 197–201.
  9. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
    [CrossRef]
  10. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
    [CrossRef]
  11. M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83 (1990).
    [CrossRef]
  12. S. Peng and G. M. Morris, in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 257.
  13. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, Opt. Lett. 21, 1564 (1996).
    [CrossRef] [PubMed]
  14. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Opt. Lett. 23, 700 (1998).
    [CrossRef]
  15. R. Magnusson, D. Shin, and Z. S. Liu, Opt. Lett. 23, 612 (1998).
    [CrossRef]
  16. T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).
    [CrossRef]

1998 (3)

1997 (1)

1996 (1)

1995 (1)

1994 (1)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

1990 (1)

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83 (1990).
[CrossRef]

1989 (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

1985 (2)

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

1965 (1)

A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Brundrett, D. L.

Engel, H.

Friesem, A. A.

Gale, M. T.

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83 (1990).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Hessel, A.

A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
[CrossRef]

Knop, K.

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83 (1990).
[CrossRef]

Liu, Z. S.

Magnusson, R.

Maldonado, T. A.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Mashev, L.

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

Morf, R. H.

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83 (1990).
[CrossRef]

Morris, G. M.

S. Peng and G. M. Morris, in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 257.

Oliner, A. A.

A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
[CrossRef]

Peng, S.

S. Peng and G. M. Morris, in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 257.

Popov, E.

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Rosenblatt, D.

Sharon, A.

Shin, D.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

R. Magnusson, D. Shin, and Z. S. Liu, Opt. Lett. 23, 612 (1998).
[CrossRef]

Steingrueber, R.

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Tamir, T.

Tibuleac, S.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Wang, S. S.

Weber, H. G.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997), pp. 197–201.

Zhang, S.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Opt. Eng. (1)

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Opt. Lett. (4)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

Proc. SPIE (1)

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83 (1990).
[CrossRef]

Other (2)

S. Peng and G. M. Morris, in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 257.

A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997), pp. 197–201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation (a) and scanning electron micrograph (b) of a double-layer GMR structure composed of a photoresist grating and a HfO2 waveguide layer on a fused-silica substrate.

Fig. 2
Fig. 2

Experimental setup for measuring the spectral characteristics of GMR reflection filters at normal incidence.

Fig. 3
Fig. 3

Theoretical and experimental spectral response of a double-layer GMR reflection filter with the structure illustrated in Fig. 1. The parameters of the device used in the theoretical modeling are Λ=487 nm, nc=1.0, ns=1.48, n1 H=1.63, n1 L=1.0, n2=1.98, d1=160 nm, d2=270 nm. The grating is assumed to have a rectangular profile with a fill factor f=0.3.

Fig. 4
Fig. 4

Experimentally measured (a) and theoretically calculated (b) TE-polarization reflectance of the GMR filter at different angles of incidence. The parameters of the device used for computing the theoretical curves are the same as in Fig. 3.

Metrics