Abstract

We report on a multichannel liquid-crystal-based wave-front corrector with smooth modal influence functions. The phase is controlled by application of spatially localized ac voltages to a distributed voltage divider formed by a liquid-crystal layer sandwiched between a high-conductance and a low-conductance electrode. The shape of the influence function depends on the control frequency and material parameters of the distributed voltage divider. We have experimentally realized a reflective modulator controlled by an array of 16×16 electrodes, providing phase control with an amplitude of 16π at λ=633 nm with a time constant of the order of tens of milliseconds. We experimentally demonstrated that the amplitude of each influence function can be controlled by change of the control voltage, whereas the width of the influence function is controlled by the frequency of the control voltage in a range of 1 mm to the full width of the modulator aperture.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Freeman and J. E. Pearson, Appl. Opt. 21, 580 (1982).
    [CrossRef] [PubMed]
  2. G. D. Love, Appl. Opt. 36, 1517 (1997).
    [CrossRef] [PubMed]
  3. Z. Zhang, G. Lu, and F. T. Yu, Opt. Eng. 33, 3018 (1994).
    [CrossRef]
  4. A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).
  5. J. Gonglewski, S. Brownie, S. Rogers, and S. McDermott, Opt. Express 1, 338 (1997); www.osa.org .
    [CrossRef]
  6. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. V. Vdovin, Opt. Lett. 23, 992 (1998).
    [CrossRef]
  7. G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
    [CrossRef]
  8. U. Efron, S. T. Wu, and T. D. Bates, J. Opt. Soc. Am. B 3, 247 (1986).
    [CrossRef]

1998

1997

1994

Z. Zhang, G. Lu, and F. T. Yu, Opt. Eng. 33, 3018 (1994).
[CrossRef]

1989

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

1986

1982

Bates, T. D.

Brownie, S.

Efron, U.

Freeman, R. H.

Gonglewski, J.

Guralnik, I. R.

Korjabin, A. V.

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

Loktev, M. Yu.

Love, G. D.

Lu, G.

Z. Zhang, G. Lu, and F. T. Yu, Opt. Eng. 33, 3018 (1994).
[CrossRef]

McDermott, S.

Middelhoek, S.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Naumov, A. F.

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. V. Vdovin, Opt. Lett. 23, 992 (1998).
[CrossRef]

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

Pearson, J. E.

Rogers, S.

Sarro, P. M.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Shmal’gauzen, V. I.

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

Vasil’ev, A. A.

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

Vdovin, G.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Vdovin, G. V.

Vorontsov, M. A.

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

Wu, S. T.

Yu, F. T.

Z. Zhang, G. Lu, and F. T. Yu, Opt. Eng. 33, 3018 (1994).
[CrossRef]

Zhang, Z.

Z. Zhang, G. Lu, and F. T. Yu, Opt. Eng. 33, 3018 (1994).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. B

Opt. Eng.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Z. Zhang, G. Lu, and F. T. Yu, Opt. Eng. 33, 3018 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Sov. J. Quantum Electron.

A. A. Vasil’ev, M. A. Vorontsov, A. V. Korjabin, A. F. Naumov, and V. I. Shmal’gauzen, Sov. J. Quantum Electron. 16, 599 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a multichannel reflective LC phase corrector.

Fig. 2
Fig. 2

Experimentally measured electro-optical characteristics of the LC cell.

Fig. 3
Fig. 3

Calculated normalized voltage distributions (solid curves) and phase delays (dashed curves) for three values of χ.

Fig. 4
Fig. 4

Front and back views of the 16×16 LC modulator.

Fig. 5
Fig. 5

Influence functions at constant control voltage U0=7.5 V and several control frequencies: 10, 20, 50, and 100 kHz (top, left to right) and 150 kHz, 250 kHz, 500 kHz, and 1 MHz (bottom, left to right). At low frequencies the influence function is so wide that only the central fringes are visible in the interferogram.

Fig. 6
Fig. 6

Influence functions at a control frequency at 75 kHz at several control voltages: 5, 7.5, and 10 V (top, left to right) and 12.5, 15, and 20 V (bottom, left to right).

Fig. 7
Fig. 7

Superposition of two (left) and three (right) influence functions.

Fig. 8
Fig. 8

Optically measured large-signal response (bottom curve) of the LC modulator to a 17.5-V (peak to peak) 75-kHz control voltage applied to a single actuator (top curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S2U=RCUt+RGU.
d2Udr2+1rdUdr-χ2U=0,
U|rr0=U0,  dUdr|r=l=0,
Ur=U0K1χlI0χr+I1χlK0χrK0χr0I1χl+K1χlI0χr0.

Metrics