Abstract

We report the experimental demonstration of nearly transform-limited dual-wavelength pulse trains at a 5-GHz repetition rate that were generated by spectral filtering of an intracavity 2.5-GHz frequency-modulated Er–Yb bulk-glass laser operating at the 1533-nm wavelength. Highly stable dual-wavelength pulse trains with 165GHz frequency separation, 48ps pulse duration, and 1mW average single-mode fiber-coupled power were obtained.

© 1998 Optical Society of America

Full Article  |  PDF Article

Corrections

S. Longhi, G. Sorbello, T. Taccheo, and P. Laporta, "5-GHz repetition-rate dual-wavelength pulse-train generation from an intracavity frequency-modulated Er-Yb:glass laser:?errata," Opt. Lett. 23, 1861-1861 (1998)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-23-23-1861

References

  • View by:
  • |
  • |
  • |

  1. For a recent review see, for instance, the special issue on ultrafast optical pulse technologies and their applications, IEICE Trans. Electron. E81-C, 93 (1998).
  2. R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
    [CrossRef]
  3. K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).
  4. X. Shan, D. Cleland, and A. Ellis, Electron. Lett. 28, 182 (1992).
    [CrossRef]
  5. T. Harvey and L. F. Mollenauer, Opt. Lett. 18, 107 (1993).
    [CrossRef] [PubMed]
  6. M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
    [CrossRef]
  7. M. Nakazawa, K. Suzuki, and Y. Kimura, Opt. Lett. 15, 588 (1990); S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
    [CrossRef] [PubMed]
  8. E. Yamada, K. Wakita, and M. Nakazawa, Electron. Lett. 29, 845 (1993).
    [CrossRef]
  9. P. V. Mamyshev, Opt. Lett. 19, 2074 (1994); E. A. Golovchenko, C. R. Menyuk, G. M. Carter, and P. V. Mamyshev, Electron. Lett. 31, 2198 (1995).
    [CrossRef] [PubMed]
  10. S. Longhi, S. Taccheo, and P. Laporta, Opt. Lett. 22, 1642 (1997).
    [CrossRef]
  11. S. Tacheo, P. Laporta, and O. Svelto, Appl. Phys. Lett. 69, 3128 (1996).
    [CrossRef]
  12. Observation of wider FM bandwidths is prevented because of finite cavity bandwidth effects that are due to the etalon; for cavity lengths closer to exact synchronism the laser switches off, and closer to resonance it switches on again and FM mode locking is attained.
  13. S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
    [CrossRef]
  14. It should be noted that, owing to the phase relations between FM modes, a possible extension of the technique for generating a multiwavelength pulse train at a higher repetition frequency (e.g., by spectral filtering of other FM modes in addition to the Stokes and anti-Stokes bands) is not straightforward, requiring a suitable rephasing of the additional groups of phase-locked modes.
  15. M. Nakazawa, S. Suzuki, and Y. Kimura, Opt. Lett. 15, 715 (1990).
    [CrossRef] [PubMed]

1998 (3)

For a recent review see, for instance, the special issue on ultrafast optical pulse technologies and their applications, IEICE Trans. Electron. E81-C, 93 (1998).

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

1997 (1)

1996 (1)

S. Tacheo, P. Laporta, and O. Svelto, Appl. Phys. Lett. 69, 3128 (1996).
[CrossRef]

1994 (2)

1993 (2)

E. Yamada, K. Wakita, and M. Nakazawa, Electron. Lett. 29, 845 (1993).
[CrossRef]

T. Harvey and L. F. Mollenauer, Opt. Lett. 18, 107 (1993).
[CrossRef] [PubMed]

1992 (1)

X. Shan, D. Cleland, and A. Ellis, Electron. Lett. 28, 182 (1992).
[CrossRef]

1990 (2)

1989 (1)

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Burrus, C. A.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Cleland, D.

X. Shan, D. Cleland, and A. Ellis, Electron. Lett. 28, 182 (1992).
[CrossRef]

Eisenstein, G.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Ellis, A.

X. Shan, D. Cleland, and A. Ellis, Electron. Lett. 28, 182 (1992).
[CrossRef]

Harvey, T.

Kimura, Y.

Koch, T. L.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Kondo, Y.

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).

Koren, U.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Kotaka, I.

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).

Laporta, P.

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

S. Longhi, S. Taccheo, and P. Laporta, Opt. Lett. 22, 1642 (1997).
[CrossRef]

S. Tacheo, P. Laporta, and O. Svelto, Appl. Phys. Lett. 69, 3128 (1996).
[CrossRef]

Longhi, S.

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

S. Longhi, S. Taccheo, and P. Laporta, Opt. Lett. 22, 1642 (1997).
[CrossRef]

Mamyshev, P. V.

Miller, B. I.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Mollenauer, L. F.

Nakazawa, M.

Raybon, G.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Sato, K.

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).

Shahar, A.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Shan, X.

X. Shan, D. Cleland, and A. Ellis, Electron. Lett. 28, 182 (1992).
[CrossRef]

Suzuki, K.

Suzuki, S.

Svelto, O.

S. Tacheo, P. Laporta, and O. Svelto, Appl. Phys. Lett. 69, 3128 (1996).
[CrossRef]

Taccheo, S.

Tacheo, S.

S. Tacheo, P. Laporta, and O. Svelto, Appl. Phys. Lett. 69, 3128 (1996).
[CrossRef]

Tucker, R. S.

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

Wakita, K.

E. Yamada, K. Wakita, and M. Nakazawa, Electron. Lett. 29, 845 (1993).
[CrossRef]

Yamada, E.

E. Yamada, K. Wakita, and M. Nakazawa, Electron. Lett. 29, 845 (1993).
[CrossRef]

Yamamoto, M.

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).

Yoshida, E.

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

S. Tacheo, P. Laporta, and O. Svelto, Appl. Phys. Lett. 69, 3128 (1996).
[CrossRef]

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

Electron. Lett. (4)

R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, Electron. Lett. 25, 621 (1989).
[CrossRef]

X. Shan, D. Cleland, and A. Ellis, Electron. Lett. 28, 182 (1992).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

E. Yamada, K. Wakita, and M. Nakazawa, Electron. Lett. 29, 845 (1993).
[CrossRef]

IEICE Trans. Electron. (2)

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, IEICE Trans. Electron. E81-C, 146 (1998).

For a recent review see, for instance, the special issue on ultrafast optical pulse technologies and their applications, IEICE Trans. Electron. E81-C, 93 (1998).

Opt. Lett. (5)

Other (2)

It should be noted that, owing to the phase relations between FM modes, a possible extension of the technique for generating a multiwavelength pulse train at a higher repetition frequency (e.g., by spectral filtering of other FM modes in addition to the Stokes and anti-Stokes bands) is not straightforward, requiring a suitable rephasing of the additional groups of phase-locked modes.

Observation of wider FM bandwidths is prevented because of finite cavity bandwidth effects that are due to the etalon; for cavity lengths closer to exact synchronism the laser switches off, and closer to resonance it switches on again and FM mode locking is attained.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of the laser system with external spectral filtering. MO, microscope objective; PM, lithium niobate phase modulator. LD, laser diode.

Fig. 2
Fig. 2

(a) Measured spectrum and (b) corresponding time-domain intensity of the FM laser emission for an effective modulation index Γ33.2 and for a microwave power to the modulator of 630 mW.

Fig. 3
Fig. 3

(a) Measured filtered spectrum and (b) corresponding pulse train of the laser output after the fiber grating. The pulse repetition rate is twice the modulation frequency.

Fig. 4
Fig. 4

Noncollinear autocorrelation trace of the dual-wavelength pulse train shown in Fig. 3(b). The dashed curve is the best-fit autocorrelation function obtained by assumption of a sechlike pulse shape. SHG, second-harmonic generation.

Metrics