Abstract

Resonant sideband production in stretched-pulse fiber lasers operating with net normal dispersion is investigated. A theoretical formulation is compared with numerical modeling and experimental results. The inherent difference from sideband generation in soliton lasers is discussed. We also consider the implications of sideband formation in related dispersion-managed soliton transmission systems.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 158 (1995).
    [CrossRef]
  2. S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
    [CrossRef]
  3. J. P. Gordon, J. Opt. Soc. Am. B 9, 91 (1992).
    [CrossRef]
  4. Y. Chen and H. A. Haus, “Dispersion-managed ‘solitons’ in net positive dispersion regime,” submitted to J. Opt. Soc. Am. B.
  5. M. L. Dennis and I. N. Duling, Opt. Lett. 19, 1750 (1994).
    [CrossRef] [PubMed]
  6. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, Opt. Lett. 21, 1759 (1996).
    [CrossRef] [PubMed]
  7. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt. Lett. 18, 1499 (1993).
    [CrossRef]
  8. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
    [CrossRef]
  9. V. S. Grigoryan and C. R. Menyuk, Opt. Lett. 23, 609 (1998).
    [CrossRef]
  10. M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
    [CrossRef]

1998 (1)

1997 (1)

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

1996 (2)

M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, Opt. Lett. 21, 1759 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Tamura, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (2)

S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

J. P. Gordon, J. Opt. Soc. Am. B 9, 91 (1992).
[CrossRef]

Chen, Y.

Y. Chen and H. A. Haus, “Dispersion-managed ‘solitons’ in net positive dispersion regime,” submitted to J. Opt. Soc. Am. B.

Dennis, M. L.

Doran, N. J.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

Duling, I. N.

Fleischer, S. B.

Forysiak, W.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

Gordon, J. P.

Grigoryan, V. S.

Haus, H. A.

K. Tamura, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

Y. Chen and H. A. Haus, “Dispersion-managed ‘solitons’ in net positive dispersion regime,” submitted to J. Opt. Soc. Am. B.

Ippen, E. P.

Kelly, S. M. J.

S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

Knox, F. M.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

Kubota, A.

M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Lenz, G.

Matera, F.

Mecozzi, A.

Menyuk, C. R.

Nakazawa, M.

M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Nelson, L. E.

Nijhof, J. H. B.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

Romagnoli, M.

Sahara, H.

M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Settembre, M.

Tamura, K.

M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

K. Tamura, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

Electron. Lett. (2)

S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Nakazawa, A. Kubota, H. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Other (1)

Y. Chen and H. A. Haus, “Dispersion-managed ‘solitons’ in net positive dispersion regime,” submitted to J. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Phase diagram of linear dispersive waves and pulses in a stretched-pulse fiber laser operating with net normal dispersion.

Fig. 2
Fig. 2

Cavity of stretched-pulse fiber laser using prisms for anomalous-dispersion compensation: BTP, birefringent tuning plate; WDM, wavelength-division multiplexer; PBS, polarizing beam splitter; SMF, single-mode fiber; DSF, dispersion-shifted fiber; EDF, erbium-doped fiber.

Fig. 3
Fig. 3

Change in spectral width and output power from the polarizing beam splitter rejection port as a function of net cavity dispersion. In this measurement the pump power and the wave plates were not changed.

Fig. 4
Fig. 4

Spectra from a 3/97 coupler for several values of net dispersion. The strength of the net normal cavity dispersion for each trace is given on the right-hand side (in units of ps2). Crosses mark the movement of the m=0 sideband. The first moment for all spectra is 1548 nm, and this is taken as Δω=0.

Fig. 5
Fig. 5

Experimental and numerical results for the m=0 sideband position as a function of spectral width. A linear fit, predicted theoretically, is shown for both sets of data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕlin=½ΔkΔω2Lc,
ϕsol=κA02Lc=12Δkτs2Lc.
ϕsp=12ΛΔkτ02Lc,
Λ=0.88E sinh-1Lck04τ024τ02Lck0,
E=τ0Δk0Lckz1-β2τ4zdz0Lc1τ3zdz-1,
ϕlin-ϕsp=Lc2ΔkΔω2-ΛΔkτ02=±2πm.
Δω=Λ/τ0.
iuz+kz22ut2+κu2u=0,

Metrics