Abstract

We demonstrate, through numerical simulations, the possibility of transmitting solitonlike pulses over 2000 km of standard fiber at a single-channel data rate of 40 Gbits/s. The system used here employs a novel dispersion map to overcome the large fiber dispersion. The longest transmission distance was achieved with pulses that did not exhibit the enhanced energy normally associated with dispersion management and indeed had lower energy than an equivalent average soliton.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Knox, W. Forysiak, and N. J. Doran, IEEE J. Lightwave Technol. 13, 1955 (1995).
    [Crossref]
  2. E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
    [Crossref]
  3. D. M. Rothnie and J. E. Midwinter, Electron. Lett. 32, 1907 (1996).
    [Crossref]
  4. K. Ennser and K. Petermann, IEEE Photon. Technol. Lett. 8, 442 (1996).
    [Crossref]
  5. J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665 (1986).
    [Crossref] [PubMed]
  6. J. P. Gordon, Opt. Lett. 8, 596 (1983).
    [Crossref] [PubMed]
  7. D. Breuer, F. Kuppers, A. Mattheus, E. G. Shapiro, I. Gabitov, and S. K. Turitsyn, Opt. Lett. 22, 982 (1997).
    [Crossref] [PubMed]
  8. X. Y. Tang, in Conference on Network and Optical Communications, NOC’97 (IOP Press, Antwerp, 1997), p. 25.
  9. D. Breuer, K. Petermann, A. Mattheus, and S. K. Turitsyn, in Twenty-Third European Conference on Optical Communication (Institution of Electrical Engineers, London, 1997), p. 261.
  10. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
    [Crossref]
  11. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
    [Crossref]
  12. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
    [Crossref]
  13. T. Georges and B. Charbonnier, in Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 145.
  14. C. J. Anderson and J. A. Lyle, Electron. Lett. 30, 71 (1994).
    [Crossref]

1998 (2)

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[Crossref]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
[Crossref]

1997 (2)

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

D. Breuer, F. Kuppers, A. Mattheus, E. G. Shapiro, I. Gabitov, and S. K. Turitsyn, Opt. Lett. 22, 982 (1997).
[Crossref] [PubMed]

1996 (3)

D. M. Rothnie and J. E. Midwinter, Electron. Lett. 32, 1907 (1996).
[Crossref]

K. Ennser and K. Petermann, IEEE Photon. Technol. Lett. 8, 442 (1996).
[Crossref]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

1995 (1)

F. M. Knox, W. Forysiak, and N. J. Doran, IEEE J. Lightwave Technol. 13, 1955 (1995).
[Crossref]

1994 (1)

C. J. Anderson and J. A. Lyle, Electron. Lett. 30, 71 (1994).
[Crossref]

1986 (1)

1983 (1)

Anderson, C. J.

C. J. Anderson and J. A. Lyle, Electron. Lett. 30, 71 (1994).
[Crossref]

Bennion, I.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Berntson, A.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[Crossref]

Blow, K. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Breuer, D.

D. Breuer, F. Kuppers, A. Mattheus, E. G. Shapiro, I. Gabitov, and S. K. Turitsyn, Opt. Lett. 22, 982 (1997).
[Crossref] [PubMed]

D. Breuer, K. Petermann, A. Mattheus, and S. K. Turitsyn, in Twenty-Third European Conference on Optical Communication (Institution of Electrical Engineers, London, 1997), p. 261.

Charbonnier, B.

T. Georges and B. Charbonnier, in Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 145.

Doran, N. J.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[Crossref]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
[Crossref]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

F. M. Knox, W. Forysiak, and N. J. Doran, IEEE J. Lightwave Technol. 13, 1955 (1995).
[Crossref]

Ennser, K.

K. Ennser and K. Petermann, IEEE Photon. Technol. Lett. 8, 442 (1996).
[Crossref]

Forysiak, W.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
[Crossref]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[Crossref]

F. M. Knox, W. Forysiak, and N. J. Doran, IEEE J. Lightwave Technol. 13, 1955 (1995).
[Crossref]

Gabitov, I.

Georges, T.

T. Georges and B. Charbonnier, in Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 145.

Gordon, J. P.

Haus, H. A.

Knox, F. M.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
[Crossref]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

F. M. Knox, W. Forysiak, and N. J. Doran, IEEE J. Lightwave Technol. 13, 1955 (1995).
[Crossref]

Kubota, H.

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

Kuppers, F.

Lyle, J. A.

C. J. Anderson and J. A. Lyle, Electron. Lett. 30, 71 (1994).
[Crossref]

Mattheus, A.

D. Breuer, F. Kuppers, A. Mattheus, E. G. Shapiro, I. Gabitov, and S. K. Turitsyn, Opt. Lett. 22, 982 (1997).
[Crossref] [PubMed]

D. Breuer, K. Petermann, A. Mattheus, and S. K. Turitsyn, in Twenty-Third European Conference on Optical Communication (Institution of Electrical Engineers, London, 1997), p. 261.

Midwinter, J. E.

D. M. Rothnie and J. E. Midwinter, Electron. Lett. 32, 1907 (1996).
[Crossref]

Nakazawa, M.

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

Nijhof, J. H. B.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[Crossref]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
[Crossref]

Petermann, K.

K. Ennser and K. Petermann, IEEE Photon. Technol. Lett. 8, 442 (1996).
[Crossref]

D. Breuer, K. Petermann, A. Mattheus, and S. K. Turitsyn, in Twenty-Third European Conference on Optical Communication (Institution of Electrical Engineers, London, 1997), p. 261.

Rothnie, D. M.

D. M. Rothnie and J. E. Midwinter, Electron. Lett. 32, 1907 (1996).
[Crossref]

Sahara, A.

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

Shapiro, E. G.

Smith, N. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Tang, X. Y.

X. Y. Tang, in Conference on Network and Optical Communications, NOC’97 (IOP Press, Antwerp, 1997), p. 25.

Turitsyn, S. K.

D. Breuer, F. Kuppers, A. Mattheus, E. G. Shapiro, I. Gabitov, and S. K. Turitsyn, Opt. Lett. 22, 982 (1997).
[Crossref] [PubMed]

D. Breuer, K. Petermann, A. Mattheus, and S. K. Turitsyn, in Twenty-Third European Conference on Optical Communication (Institution of Electrical Engineers, London, 1997), p. 261.

Yamada, E.

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

Yamamoto, T.

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

Electron. Lett. (6)

E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 33, 602 (1997).
[Crossref]

D. M. Rothnie and J. E. Midwinter, Electron. Lett. 32, 1907 (1996).
[Crossref]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[Crossref]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1998).
[Crossref]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

C. J. Anderson and J. A. Lyle, Electron. Lett. 30, 71 (1994).
[Crossref]

IEEE J. Lightwave Technol. (1)

F. M. Knox, W. Forysiak, and N. J. Doran, IEEE J. Lightwave Technol. 13, 1955 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Ennser and K. Petermann, IEEE Photon. Technol. Lett. 8, 442 (1996).
[Crossref]

Opt. Lett. (3)

Other (3)

X. Y. Tang, in Conference on Network and Optical Communications, NOC’97 (IOP Press, Antwerp, 1997), p. 25.

D. Breuer, K. Petermann, A. Mattheus, and S. K. Turitsyn, in Twenty-Third European Conference on Optical Communication (Institution of Electrical Engineers, London, 1997), p. 261.

T. Georges and B. Charbonnier, in Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 145.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

One amplifier span of the system used in these simulations: SF, standard fiber; DCF, dispersion-compensating fiber; filter bandwidth, 5.25 nm; amplifier noise figure, 4.5 dB.

Fig. 2
Fig. 2

Sample eye diagram taken from 1100 km in a system with 50 km of standard fiber and average dispersion of 0.19 ps/nm km.

Fig. 3
Fig. 3

Three pulses as they reach the point in the standard fiber at which they are unchirped. The system used here had 50 km of standard fiber and an average dispersion of 0.19 ps/nm km. The input Gaussian pulses had a peak power of 0.14 W and a FWHM of 5.0 ps.

Fig. 4
Fig. 4

Position in the standard fiber at which the pulses are recovered versus the number of amplifier spans.

Fig. 5
Fig. 5

Q value versus distance for the three systems that were investigated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=Lnβn-Laβaτ2,
Q=μ1-μ0σ1+σ0,

Metrics