Abstract

The information capacities of two-dimensional optical low-pass channels are discussed. Coherent and incoherent systems operating under finite optical power and area constraints are characterized in terms of two criteria: space–bandwidth product (SBP; the number of pixels required for achieving maximum information capacity) and resolution (Gmin; the smallest spot size capable of supporting positive capacity gain). A coherent system operating with an initial signal-to-noise ratio (SNR) of 5 can achieve a 48% capacity gain by operating at an optimal SBP that is 3.4 times that of the nominal system. The same system has a resolution that is 0.31 times nominal. Incoherent systems experience additional SNR loss, and with an initial SNR of 5 they achieve capacity gains of 29% at the optimal SBP of 2.8 times nominal. The incoherent system resolution is found to be 0.4 times nominal.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ronchi, J. Opt. Soc. Am. 51, 458 (1961).
    [CrossRef]
  2. A. J. den Dekker and A. van den Bos, J. Opt. Soc. Am. A 14, 547 (1997).
    [CrossRef]
  3. B. R. Frieden, in Picture Processing and Digital Filtering, T. S. Huang, ed., Vol. 6 of Topics in Applied Physics (Springer-Verlag, New York, 1975), pp. 177–248.
    [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), Chap. 2, p. 27.
  5. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991), Chap. 8, pp. 183–224.
    [CrossRef]
  6. S. Benedetto, D. Divsalar, and J. Hagenauer, eds., special issue on concatenated coding techniques and iterative decoding, IEEE Trans. Sel. Areas Commun. 16(2) (1998).

1998 (1)

S. Benedetto, D. Divsalar, and J. Hagenauer, eds., special issue on concatenated coding techniques and iterative decoding, IEEE Trans. Sel. Areas Commun. 16(2) (1998).

1997 (1)

1961 (1)

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991), Chap. 8, pp. 183–224.
[CrossRef]

den Dekker, A. J.

Frieden, B. R.

B. R. Frieden, in Picture Processing and Digital Filtering, T. S. Huang, ed., Vol. 6 of Topics in Applied Physics (Springer-Verlag, New York, 1975), pp. 177–248.
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), Chap. 2, p. 27.

Ronchi, V.

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991), Chap. 8, pp. 183–224.
[CrossRef]

van den Bos, A.

IEEE Trans. Sel. Areas Commun. (1)

S. Benedetto, D. Divsalar, and J. Hagenauer, eds., special issue on concatenated coding techniques and iterative decoding, IEEE Trans. Sel. Areas Commun. 16(2) (1998).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Other (3)

B. R. Frieden, in Picture Processing and Digital Filtering, T. S. Huang, ed., Vol. 6 of Topics in Applied Physics (Springer-Verlag, New York, 1975), pp. 177–248.
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), Chap. 2, p. 27.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991), Chap. 8, pp. 183–224.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Capacity gain versus spot size for a coherent low-pass optical system at three values of initial SNR: 1, 3, and 5. Dashed curves represent RS code performance.

Fig. 2
Fig. 2

Information-theoretical SBP (solid curves) and resolution (dashed curves) versus SNR for both coherent (coh) and incoherent (incoh) optical low-pass systems. Isolated symbols represent RS code performance.

Fig. 3
Fig. 3

Capacity gain versus spot size for an incoherent low-pass optical system at four values of initial SNR: 1, 3, 5, and 10. Dashed curves represent RS code performance.

Metrics