Abstract

We have demonstrated highly efficient frequency doubling of femtosecond pulses in a thick, noncritically phase-matched KNbO3 crystal under conditions of large group-velocity mismatch. At low power we observed a slope efficiency of 300% nJ-1 for harmonic conversion, and at higher powers we generated 170 mW of second-harmonic blue output for 300 mW of input light. Furthermore, we have shown that the focusing dependence for our conditions of large group-velocity mismatch is considerably different from that obtained for frequency doubling of continuous-wave light. We have also demonstrated that one can tune the spectral width of the generated blue light by varying the focusing conditions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nebel and R. Beigang, Opt. Lett. 16, 1729 (1991).
    [CrossRef] [PubMed]
  2. F. Seifert and V. Petrov, Opt. Commun. 99, 413 (1993).
    [CrossRef]
  3. H. Tsuchida, Jpn. J. Appl. Phys. 33, 6190 (1994).
    [CrossRef]
  4. W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
    [CrossRef]
  5. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, Opt. Lett. 23, 171 (1998).
    [CrossRef]
  6. W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
    [CrossRef]
  7. J. Comly and E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
    [CrossRef]
  8. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Sov. Phys. JETP 28, 748 (1969).
  9. A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
    [CrossRef]
  10. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  11. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  12. B. Zysset, I. Biaggio, and P. Günter, J. Opt. Soc. Am. B 9, 380 (1992).
    [CrossRef]

1998

1997

1994

H. Tsuchida, Jpn. J. Appl. Phys. 33, 6190 (1994).
[CrossRef]

1993

F. Seifert and V. Petrov, Opt. Commun. 99, 413 (1993).
[CrossRef]

1992

1991

1990

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

1983

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

1969

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Sov. Phys. JETP 28, 748 (1969).

W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
[CrossRef]

1968

J. Comly and E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Sov. Phys. JETP 28, 748 (1969).

Arbore, M. A.

Beigang, R.

Biaggio, I.

Bona, G. L.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Britton, P. E.

Chirkin, A. S.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Sov. Phys. JETP 28, 748 (1969).

Chou, M. H.

Clarkson, W. A.

Comly, J.

J. Comly and E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

Fejer, M. M.

Galvanauskas, A.

Garmire, E.

J. Comly and E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

Glenn, W. H.

W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
[CrossRef]

Günter, P.

Hanna, D. C.

Harter, D.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kozlovsky, W. J.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Latta, E. E.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Lenth, W.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Moser, A.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Nebel, A.

Petrov, V.

F. Seifert and V. Petrov, Opt. Commun. 99, 413 (1993).
[CrossRef]

Pollnau, M.

Ross, G. W.

Seifert, F.

F. Seifert and V. Petrov, Opt. Commun. 99, 413 (1993).
[CrossRef]

Smith, P. G. R.

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Sov. Phys. JETP 28, 748 (1969).

Tsuchida, H.

H. Tsuchida, Jpn. J. Appl. Phys. 33, 6190 (1994).
[CrossRef]

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

Zysset, B.

Appl. Phys. Lett.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

J. Comly and E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

IEEE J. Quantum Electron.

W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
[CrossRef]

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

H. Tsuchida, Jpn. J. Appl. Phys. 33, 6190 (1994).
[CrossRef]

Opt. Commun.

F. Seifert and V. Petrov, Opt. Commun. 99, 413 (1993).
[CrossRef]

Opt. Lett.

Sov. Phys. JETP

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Sov. Phys. JETP 28, 748 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SH power (left) and conversion efficiency (right) versus input power for 31- and 140-mm focal-length lenses.

Fig. 2
Fig. 2

SH efficiency versus focusing for 3.7-mW and 5.5-mW input powers. Also shown are theoretical fits from Eq. (4) (————) and from the cw theory (– – – –).

Fig. 3
Fig. 3

SH spectra obtained for simple lenses with 60 mm (—·· —··) and f=38 mm (– – – –) and a 10× microscope objective f=16 mm (⋯⋯··). Also shown is the theoretical spectrum for the tightest focusing case (————).

Fig. 4
Fig. 4

SH output power and depletion in pump power for an 80-mm focal-length lens for low-power (– – – –) and high-power (————) optimizations, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P2ωPω=γPωL2b,  γ=4ω02deff2n2c30λ.
P2ω/PωγPωb.
U2ωUω=γUωtplT2bLlT=γUωLαb.
U2ωUω=γUωlTtp-L/2L/2dz2πnw2z/λ=γUωαtan-1Lb.

Metrics