Abstract

The effects of the approximation D=0 that is often used in frequency-resolved optical diffusion imaging are examined. It is shown that this approximation can affect the performance of integral-equation-based approaches to optical diffusion imaging, such as the Born iterative method and the distorted Born iterative method. The approximation introduces errors into the calculation of data used in simulations, which can lead to misleading evaluations of reconstruction algorithms. Numerical calculations show the magnitude of these effects and the appearance of artifacts in reconstructed images when conventional inversion algorithms are applied to more accurately calculated data.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography

J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar
J. Opt. Soc. Am. A 16(7) 1814-1826 (1999)

Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework

Jong Chul Ye, Kevin J. Webb, Charles A. Bouman, and R. P. Millane
J. Opt. Soc. Am. A 16(10) 2400-2412 (1999)

Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data

Regine Model, Matthias Orlt, Monika Walzel, and Rolf Hünlich
J. Opt. Soc. Am. A 14(1) 313-324 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription