Abstract

Laser waveguides based on surface plasmons at a metal–semiconductor interface have been demonstrated by use of quantum cascade (QC) lasers emitting in the 811.5µm wavelength range. The guided modes are transverse magnetic polarized surface waves that propagate at the metal (Pd or Ti–Au)–semiconductor interface between the laser top contact and the active region without the necessity for waveguide cladding layers. The resultant structure has the advantages of a strong decrease in the total layer thickness and a higher confinement factor of the laser-active region compared with those of a conventional layered semiconductor waveguide, and strong coupling to the active material, which could be used in devices such as distributed-feedback lasers. These advantages have to be traded against the disadvantage of increased absorption losses. A peak output power exceeding 25  mW at 90  K and a maximum operating temperature of 150  K were measured for a QC laser with an emission wavelength λ8 µm. At λ11.5 µm the peak power levels are several milliwatts and the maximum operating temperature is 110  K.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  2. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
    [CrossRef]
  3. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
    [CrossRef]
  4. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
    [CrossRef]
  5. The idea of surface plasmons as guided modes for lasers is already present in the literature. Nevertheless, because of their strong attenuation coefficient, surface plasmons have been thought to be of no practical interest [see, e.g., P. Zory, Appl. Phys. Lett. 22, 125 (1973). Surface plasmons have been used to improve the performance of light-emitting diodes or as waveguide couplers [see, e.g., A. Köck, E. Gornik, M. Hauser, and W. Beinstingl, Appl. Phys. Lett. 57, 2327 (1990), A. Köck, A. Seeberg, M. Rosenberger, C. Gmachl, E. Gornik, C. Thanner, and L. Korte, Appl. Phys. Lett. 63, 1164 (1993).
    [CrossRef]
  6. C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
    [CrossRef]
  7. This formula is valid only for Fabry–Perot cavities in which the dispersion of the medium between the mirrors is negligible.8
  8. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  9. A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

1998

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

1997

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

1996

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

1973

The idea of surface plasmons as guided modes for lasers is already present in the literature. Nevertheless, because of their strong attenuation coefficient, surface plasmons have been thought to be of no practical interest [see, e.g., P. Zory, Appl. Phys. Lett. 22, 125 (1973). Surface plasmons have been used to improve the performance of light-emitting diodes or as waveguide couplers [see, e.g., A. Köck, E. Gornik, M. Hauser, and W. Beinstingl, Appl. Phys. Lett. 57, 2327 (1990), A. Köck, A. Seeberg, M. Rosenberger, C. Gmachl, E. Gornik, C. Thanner, and L. Korte, Appl. Phys. Lett. 63, 1164 (1993).
[CrossRef]

Baillargeon, J. N.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

Capasso, F.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

Cho, A. Y.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

Drouhin, H.-J.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Faist, J.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

Filipe, A.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Gmachl, C.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

Hutchinson, A. L.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

Lampel, G.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Lassailly, Y.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Peretti, J.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Safarov, V. I.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Schuhl, A.

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Sirtori, C.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

Sivco, D. L.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Tredicucci, A.

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Zory, P.

The idea of surface plasmons as guided modes for lasers is already present in the literature. Nevertheless, because of their strong attenuation coefficient, surface plasmons have been thought to be of no practical interest [see, e.g., P. Zory, Appl. Phys. Lett. 22, 125 (1973). Surface plasmons have been used to improve the performance of light-emitting diodes or as waveguide couplers [see, e.g., A. Köck, E. Gornik, M. Hauser, and W. Beinstingl, Appl. Phys. Lett. 57, 2327 (1990), A. Köck, A. Seeberg, M. Rosenberger, C. Gmachl, E. Gornik, C. Thanner, and L. Korte, Appl. Phys. Lett. 63, 1164 (1993).
[CrossRef]

Appl. Phys. Lett.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 3242 (1996).
[CrossRef]

The idea of surface plasmons as guided modes for lasers is already present in the literature. Nevertheless, because of their strong attenuation coefficient, surface plasmons have been thought to be of no practical interest [see, e.g., P. Zory, Appl. Phys. Lett. 22, 125 (1973). Surface plasmons have been used to improve the performance of light-emitting diodes or as waveguide couplers [see, e.g., A. Köck, E. Gornik, M. Hauser, and W. Beinstingl, Appl. Phys. Lett. 57, 2327 (1990), A. Köck, A. Seeberg, M. Rosenberger, C. Gmachl, E. Gornik, C. Thanner, and L. Korte, Appl. Phys. Lett. 63, 1164 (1993).
[CrossRef]

C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 69, 2810 (1996).
[CrossRef]

IEEE J. Quantum Electron.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

Other

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

This formula is valid only for Fabry–Perot cavities in which the dispersion of the medium between the mirrors is negligible.8

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

A. Filipe, H.-J. Drouhin, G. Lampel, Y. Lassailly, J. Peretti, V. I. Safarov, and A. Schuhl, in Proceedings of the MRS Spring Meeting, San Francisco CA, 1997, J. Tobin, ed., Vol. 475 of MRS Symposia Proceedings (Materials Research Society, Pittsburgh, Pa., 1997), p. 75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mode intensity profile in the direction perpendicular to the layers for laser D2295. The overlap factor Γ for the active region is calculated as 70%. Inset, schematic cross section of the device structure of laser D2295. Sample D2361 has a continuous Ti–Au top contact.

Fig. 2
Fig. 2

Applied bias and measured peak output power from a single facet as a function of injected current for a laser 20 µm wide and 0.8  mm long at three heat-sink temperatures. Inset, high-resolution laser spectrum of the device at 30  K. The maximum peak output power is estimated to be several milliwatts.

Fig. 3
Fig. 3

Measured peak optical power from a single facet versus drive current at five heat-sink temperatures for a laser processed from sample D2361. The device is 15 µm wide and 2.25  mm long. Inset, threshold current in pulsed operation as a function of heat-sink temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=4πnknd3n2-k2nd2+n2-k231/21λ4πnnd3k3λ,

Metrics