Abstract

Laser waveguides based on surface plasmons at a metal–semiconductor interface have been demonstrated by use of quantum cascade (QC) lasers emitting in the 811.5µm wavelength range. The guided modes are transverse magnetic polarized surface waves that propagate at the metal (Pd or Ti–Au)–semiconductor interface between the laser top contact and the active region without the necessity for waveguide cladding layers. The resultant structure has the advantages of a strong decrease in the total layer thickness and a higher confinement factor of the laser-active region compared with those of a conventional layered semiconductor waveguide, and strong coupling to the active material, which could be used in devices such as distributed-feedback lasers. These advantages have to be traded against the disadvantage of increased absorption losses. A peak output power exceeding 25  mW at 90  K and a maximum operating temperature of 150  K were measured for a QC laser with an emission wavelength λ8 µm. At λ11.5 µm the peak power levels are several milliwatts and the maximum operating temperature is 110  K.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription