Abstract

We propose the idea of a subwavelength-sized light guide represented by a linear chain of spherical metal nanoparticles in which light is transmitted by electrodynamic interparticle coupling. The light-transport properties of this system are investigated by use of model calculations based on generalized Mie theory. Considering Ag particles of 50-nm diameter, we find optimum guiding conditions for an interparticle spacing of 25  nm, and a corresponding 1/e signal-damping length of 900  nm is evaluated. The proposed principle of optical energy transport may be useful for subwavelength transmission lines within integrated optics circuits and for near-field optical microscopy.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  2. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
    [CrossRef] [PubMed]
  3. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
    [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley, New York, 1983).
  5. J. M. Gérardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).
    [CrossRef]
  6. G. Mie, Ann. Phys. 25, 377 (1908).
    [CrossRef]
  7. M. Quinten and U. Kreibig, Appl. Opt. 32, 6173 (1993).
    [CrossRef] [PubMed]
  8. M. Quinten, Z. Phys. B 101, 211 (1996).
    [CrossRef]
  9. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  10. B. Lamprecht, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 46, 269 (1997).
    [CrossRef]

1997 (2)

1996 (3)

M. Quinten, Z. Phys. B 101, 211 (1996).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
[CrossRef]

1993 (1)

1982 (1)

J. M. Gérardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1908 (1)

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Ausloos, M.

J. M. Gérardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 46, 269 (1997).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley, New York, 1983).

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Gérardy, J. M.

J. M. Gérardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).
[CrossRef]

Gotschy, W.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley, New York, 1983).

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kobayashi, T.

Kreibig, U.

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 46, 269 (1997).
[CrossRef]

Leitner, A.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 46, 269 (1997).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
[CrossRef]

Mie, G.

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Morimoto, A.

Quinten, M.

Takahara, J.

Taki, H.

Vonmetz, K.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
[CrossRef]

Yamagishi, S.

Ann. Phys. (1)

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 63, 381 (1996).
[CrossRef]

B. Lamprecht, A. Leitner, and F. R. Aussenegg, Appl. Phys. B 46, 269 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

J. M. Gérardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Z. Phys. B (1)

M. Quinten, Z. Phys. B 101, 211 (1996).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Definition of the coordinate system in the calculations.

Fig. 2
Fig. 2

xy electric field intensity distribution along a chain of 25-nm-radius Ag nanospheres for two polarization directions: (a) parallel to the chain axis and (b) normal to the chain axis. (c), (d) Corresponding field distributions for a chain with a finite particle number of 5. Only the first particle at the bottom of the figure is assumed to be irradiated by light.

Fig. 3
Fig. 3

Decay of field intensity in the chain axis direction. Values are taken at identical positions of each particle as shown by the open circles in the inset (corresponding to the section of Fig.  2 parallel to the axis). The given parameter dij/a is the ratio of interparticle (center–center) distance and particle radius. The intensities are normalized to the irradiated light-field intensity. Note the strong nonexponential decay for dij/a>3.

Tables (1)

Tables Icon

Table 1 Signal-Damping Coefficient γ for the Exponential Part of the Slope per Particle and per Nanometer for Different Ratios of Particle Radius and Interparticle Distancesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

αnmi-anijiN q=1 p=-qqαqpjSnmqpi,j+βqpjTnmqpi,j=ani,
βnmi-bnijiN q=1 p=-qqαqpjTnmqpi,j+βqpjSnmqpi,j=bni.

Metrics