Abstract

A method is reported for time- and space-resolved nonintrusive velocimetry of high-speed gas flows by measurement of the Doppler shift of light scattered from a laser-induced thermal grating. The principle is demonstrated by use of a pulsed frequency-doubled Nd:YAG laser to induce a thermal grating in NO2 seeded into an argon flow. Signals are generated by Bragg scattering of probe beams at the fundamental frequency of the same Nd:YAG laser. Flow velocities in the range 30180 ms-1 are measured, in agreement with values obtained with a Pitot tube. The measurement uncertainties obtained indicate that a precision of 1% is feasible for flows at Mach 1.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. K. P. Taylor, ed., Instrumentation for Flows with Combustion (Academic, San Diego, Calif., 1993).
  2. R. Miles, W. Lempert, and B. Zhang, Fluid Dyn. Res. 8, 9 (1991).
    [CrossRef]
  3. R. B. Miles, E. Udd, and M. Zimmermann, Appl. Phys. Lett. 32, 317 (1978).
    [CrossRef]
  4. J. C. McDaniel, B. Hiller, and R. K. Hanson, Opt. Lett. 8, 474 (1983).
    [CrossRef]
  5. G. C. Herring, W. M. Fairbank, and C. Y. She, IEEE J. Quantum Electron. QE-17, 1975 (1981).
    [CrossRef]
  6. E. K. Gustafson, J. C. McDaniel, and R. L. Byer, IEEE J. Quantum Electron. QE-17, 2258 (1981).
    [CrossRef]
  7. M. Lefebvre, M. Pealat, and J. Strempel, Opt. Lett. 17, 1806 (1992).
    [CrossRef] [PubMed]
  8. R. B. Williams, P. Ewart, and A. Dreizler, Opt. Lett. 19, 1486 (1994).
    [CrossRef] [PubMed]
  9. P. M. Danehy and R. L. Farrow, Appl. Phys. B 62, 407 (1996).
    [CrossRef]
  10. E. B. Cummings, Opt. Lett. 19, 1361 (1994).
    [CrossRef] [PubMed]
  11. E. B. Cummings, I. A. Leyva, and H. G. Hornung, Appl. Opt. 34, 3290 (1995).
    [CrossRef] [PubMed]
  12. P. M. Danehy, P. H. Paul, and R. L. Farrow, J. Opt. Soc. Am. 12, 1564 (1995).

1996 (1)

P. M. Danehy and R. L. Farrow, Appl. Phys. B 62, 407 (1996).
[CrossRef]

1995 (2)

E. B. Cummings, I. A. Leyva, and H. G. Hornung, Appl. Opt. 34, 3290 (1995).
[CrossRef] [PubMed]

P. M. Danehy, P. H. Paul, and R. L. Farrow, J. Opt. Soc. Am. 12, 1564 (1995).

1994 (2)

1992 (1)

1991 (1)

R. Miles, W. Lempert, and B. Zhang, Fluid Dyn. Res. 8, 9 (1991).
[CrossRef]

1983 (1)

1981 (2)

G. C. Herring, W. M. Fairbank, and C. Y. She, IEEE J. Quantum Electron. QE-17, 1975 (1981).
[CrossRef]

E. K. Gustafson, J. C. McDaniel, and R. L. Byer, IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

1978 (1)

R. B. Miles, E. Udd, and M. Zimmermann, Appl. Phys. Lett. 32, 317 (1978).
[CrossRef]

Byer, R. L.

E. K. Gustafson, J. C. McDaniel, and R. L. Byer, IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

Cummings, E. B.

Danehy, P. M.

P. M. Danehy and R. L. Farrow, Appl. Phys. B 62, 407 (1996).
[CrossRef]

P. M. Danehy, P. H. Paul, and R. L. Farrow, J. Opt. Soc. Am. 12, 1564 (1995).

Dreizler, A.

Ewart, P.

Fairbank, W. M.

G. C. Herring, W. M. Fairbank, and C. Y. She, IEEE J. Quantum Electron. QE-17, 1975 (1981).
[CrossRef]

Farrow, R. L.

P. M. Danehy and R. L. Farrow, Appl. Phys. B 62, 407 (1996).
[CrossRef]

P. M. Danehy, P. H. Paul, and R. L. Farrow, J. Opt. Soc. Am. 12, 1564 (1995).

Gustafson, E. K.

E. K. Gustafson, J. C. McDaniel, and R. L. Byer, IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

Hanson, R. K.

Herring, G. C.

G. C. Herring, W. M. Fairbank, and C. Y. She, IEEE J. Quantum Electron. QE-17, 1975 (1981).
[CrossRef]

Hiller, B.

Hornung, H. G.

Lefebvre, M.

Lempert, W.

R. Miles, W. Lempert, and B. Zhang, Fluid Dyn. Res. 8, 9 (1991).
[CrossRef]

Leyva, I. A.

McDaniel, J. C.

J. C. McDaniel, B. Hiller, and R. K. Hanson, Opt. Lett. 8, 474 (1983).
[CrossRef]

E. K. Gustafson, J. C. McDaniel, and R. L. Byer, IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

Miles, R.

R. Miles, W. Lempert, and B. Zhang, Fluid Dyn. Res. 8, 9 (1991).
[CrossRef]

Miles, R. B.

R. B. Miles, E. Udd, and M. Zimmermann, Appl. Phys. Lett. 32, 317 (1978).
[CrossRef]

Paul, P. H.

P. M. Danehy, P. H. Paul, and R. L. Farrow, J. Opt. Soc. Am. 12, 1564 (1995).

Pealat, M.

She, C. Y.

G. C. Herring, W. M. Fairbank, and C. Y. She, IEEE J. Quantum Electron. QE-17, 1975 (1981).
[CrossRef]

Strempel, J.

Udd, E.

R. B. Miles, E. Udd, and M. Zimmermann, Appl. Phys. Lett. 32, 317 (1978).
[CrossRef]

Williams, R. B.

Zhang, B.

R. Miles, W. Lempert, and B. Zhang, Fluid Dyn. Res. 8, 9 (1991).
[CrossRef]

Zimmermann, M.

R. B. Miles, E. Udd, and M. Zimmermann, Appl. Phys. Lett. 32, 317 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

P. M. Danehy and R. L. Farrow, Appl. Phys. B 62, 407 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

R. B. Miles, E. Udd, and M. Zimmermann, Appl. Phys. Lett. 32, 317 (1978).
[CrossRef]

Fluid Dyn. Res. (1)

R. Miles, W. Lempert, and B. Zhang, Fluid Dyn. Res. 8, 9 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. C. Herring, W. M. Fairbank, and C. Y. She, IEEE J. Quantum Electron. QE-17, 1975 (1981).
[CrossRef]

E. K. Gustafson, J. C. McDaniel, and R. L. Byer, IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

P. M. Danehy, P. H. Paul, and R. L. Farrow, J. Opt. Soc. Am. 12, 1564 (1995).

Opt. Lett. (4)

Other (1)

A. M. K. P. Taylor, ed., Instrumentation for Flows with Combustion (Academic, San Diego, Calif., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental arrangement for thermal grating velocimetry. The fundamental of the Nd:YAG laser (1064 nm) is split from the second harmonic (532 nm) by a beam splitter and directed to the thermal grating at the Bragg angle φ after an optical delay (not shown).

Fig. 2
Fig. 2

(a) Forward and backward signals from stationary gas. (b) Fringes shifted by the Doppler effect of scattering from a laser-induced grating in a flow. The open and filled circles are the recorded data for forward and backward generated signals, respectively. The solid curves are fitted fringe profiles from which the shift of the line-center frequency is determined. The measured shift yields a flow velocity of 150±12 ms-1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d=λ1/2 sinθ/2.
Δν=2v/λ2sin φ,
d=λ2/2 sin φ

Metrics