Abstract

Poly(indenofluorene) shows a strong degenerate four-wave mixing (DFWM) response when it is excited with 100-fs pulses at 800 nm. The DFWM signal scales with the 1.5 power of the input intensity, which we interpret as being due to absorption saturation phenomena. The saturation was studied by open-aperture Z scan in dilute solutions of poly(indenofluorene) in chloroform. The changes in the absorption coefficient α are described by the formula α=α0/1+I/Isat1/2, where Isat is the saturation intensity, which is found to be of the order of 100 MW/cm2.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. M. G. Kuzyk, in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 507–548.
    [CrossRef]
  3. M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, B. Hsieh, and U. Scherf, J. Opt. Soc. Am. B 15, 817 (1998).
    [CrossRef]
  4. H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
    [CrossRef]
  5. W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
    [CrossRef] [PubMed]
  6. L. Yang, R. Dorsinville, Q. Z. Wang, P. X. Ye, R. R. Alfano, R. Zamboni, and C. Taliani, Opt. Lett. 17, 323 (1992).
    [CrossRef] [PubMed]
  7. M. Samoc, A. Samoc, B. Luther-Davies, J. Swiatkiewicz, C. Q. Jin, and J. W. White, Opt. Lett. 20, 2478 (1995).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986) p. 207.
  9. G. A. Swartzlander, H. Yin, and A. E. Kaplan, J. Opt. Soc. Am. B 6, 1317 (1989).
    [CrossRef]
  10. D. H. Close, Phys. Rev. 153, 360 (1966).
    [CrossRef]

1998

1996

H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
[CrossRef]

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

1995

1992

1989

1966

D. H. Close, Phys. Rev. 153, 360 (1966).
[CrossRef]

Alfano, R. R.

Bao, Z.

Close, D. H.

D. H. Close, Phys. Rev. 153, 360 (1966).
[CrossRef]

De Silvestri, S.

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Dorsinville, R.

Graupner, W.

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Hsieh, B.

Jin, C. Q.

Kaplan, A. E.

Kuzyk, M. G.

M. G. Kuzyk, in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 507–548.
[CrossRef]

Lanzani, G.

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Leising, G.

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Luther-Davies, B.

Nisoli, M.

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Reisch, H.

H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
[CrossRef]

Samoc, A.

Samoc, M.

Scherf, U.

M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, B. Hsieh, and U. Scherf, J. Opt. Soc. Am. B 15, 817 (1998).
[CrossRef]

H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
[CrossRef]

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986) p. 207.

Swartzlander, G. A.

Swiatkiewicz, J.

Taliani, C.

Tuytuylkov, N.

H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
[CrossRef]

Wang, Q. Z.

White, J. W.

Wiesler, U.

H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
[CrossRef]

Williams, D. J.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Yang, L.

Ye, P. X.

Yin, H.

Yu, L.

Zamboni, R.

J. Opt. Soc. Am. B

Macromolecules

H. Reisch, U. Wiesler, U. Scherf, and N. Tuytuylkov, Macromolecules 29, 8204 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev.

D. H. Close, Phys. Rev. 153, 360 (1966).
[CrossRef]

Phys. Rev. Lett.

W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. De Silvestri, and U. Scherf, Phys. Rev. Lett. 76, 847 (1996).
[CrossRef] [PubMed]

Other

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

M. G. Kuzyk, in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 507–548.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986) p. 207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum of a thin PIF film 0.1 µm thick. The chemical structure of PIF is shown in the inset.

Fig. 2
Fig. 2

Semilog plots of DFWM curves obtained at 800 nm with 100-fs pulses in a thin PIF film 0.1 µm. The energies of the beams are marked.

Fig. 3
Fig. 3

Experimental and theoretical open-aperture Z scans of 1-mm cells containing chloroform solutions of PIF with the following concentrations: 0.0057% (curve 1), 0.0113% (curve 2), 0.0189% (curve 3), 0.0292% (curve 4), 0.0396% (curve 5), and 0.0576% (curve 6).

Fig. 4
Fig. 4

Comparison of theoretical Z-scan shapes [curves 1, 2, 3, and 4 calculated with Eqs. (1), (3), (4), and (5), respectively] with that of the experimental curve (squares).

Fig. 5
Fig. 5

Best-fit saturation intensity Isat versus the concentration of PIF in chloroform for the data presented in Fig. 3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

αI=α0+βI,
dNdt=σIhνNg-N-Nτ=0,
α=α011+τσI/hν=α011+I/Isat,
α=α011+I/Isat0.5.
α=α011+I/Isat0.5,

Metrics