Abstract

We propose and demonstrate a new method for single-shot multiplex absorption spectroscopy that permits enhanced sensitivity in the simultaneous measurement of multiple spectral lines in rapidly changing gas-phase media, such as turbulent flames. It uses an ultrashort laser pulse that propagates through the absorbing medium, for which the relevant absorption information resides in the free-induction decay that is trailing behind the transmitted pulse. Time gating out most of the transmitted pulse, but not the free-induction decay, enhances the relative fraction of light that contains absorption information when the spectrum is measured. This procedure reduces the background associated with the input light, thus enhancing detection sensitivity.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
    [CrossRef]
  2. W. D. Perkins, J. Chem. Educ. 63, A5 (1986).
    [CrossRef]
  3. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
    [CrossRef] [PubMed]
  4. P. M. Johnson and C. E. Otis, Annu. Rev. Phys. Chem. 32, 139 (1981).
    [CrossRef]
  5. P. C. Claspy, C. Ha, and Y. H. Pao, Appl. Opt. 16, 2972 (1977).
    [CrossRef] [PubMed]
  6. R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 36, 959 (1976).
    [CrossRef]
  7. J. N. Sweetser and I. A. Walmsley, J. Opt. Soc. Am. B 13, 601 (1996).
    [CrossRef]
  8. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).
  9. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, Opt. Lett. 22, 519 (1997).
    [CrossRef] [PubMed]

1997 (2)

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
[CrossRef] [PubMed]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, Opt. Lett. 22, 519 (1997).
[CrossRef] [PubMed]

1996 (1)

1986 (1)

W. D. Perkins, J. Chem. Educ. 63, A5 (1986).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

1981 (1)

P. M. Johnson and C. E. Otis, Annu. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

1977 (1)

1976 (1)

R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

Claspy, P. C.

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

Fittinghoff, D. N.

Ha, C.

Johnson, P. M.

P. M. Johnson and C. E. Otis, Annu. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

Kano, S. S.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

O’Keefe, A.

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
[CrossRef] [PubMed]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Otis, C. E.

P. M. Johnson and C. E. Otis, Annu. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

Pao, Y. H.

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
[CrossRef] [PubMed]

Perkins, W. D.

W. D. Perkins, J. Chem. Educ. 63, A5 (1986).
[CrossRef]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
[CrossRef] [PubMed]

Sweetser, J. N.

Trebino, R.

Walmsley, I. A.

Annu. Rev. Phys. Chem. (1)

P. M. Johnson and C. E. Otis, Annu. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
[CrossRef] [PubMed]

J. Chem. Educ. (1)

W. D. Perkins, J. Chem. Educ. 63, A5 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

Other (1)

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Electric field envelope of a pulse after passage through an absorbing medium with two absorption lines (b) transmission through an ideal gate, (c) transmitted electric field through the gate. Note that the magnitude of the FID is greatly exaggerated compared with the pulse amplitude in (a).

Fig. 2
Fig. 2

Ungated pulse and (a) FID and (b) spectrum, and gated pulse and (c) FID and (d) spectrum for the case of two absorption lines. Note the change in scale for the gated FID and spectrum [(c) and (d)].

Fig. 3
Fig. 3

FASTGAS experimental apparatus for time gating with laser-induced gratings.

Fig. 4
Fig. 4

Transmitted spectra for a sample consisting of an etalon. Dashed curve, input spectrum; solid curves, gated and ungated spectra. The transmission dips are enhanced by a factor of 5.5 by the FASTGAS technique.

Fig. 5
Fig. 5

Same as Fig. 4, except that a cell of NO2 is used as the sample. The absorption dips are enhanced by a factor of 4.

Fig. 6
Fig. 6

Measured gate efficiency versus time for the GG420 colored glass filter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Itransω=εEω+iδχωEω2,
ItransωεEω2-2δε ImχωEω2.
S/B=2δ/εIm χω.

Metrics