Abstract

We investigate the evolution of optical pulses in a hollow waveguide filled with noble gas at pulse intensities for which tunnel ionization dominates the nonlinear response of the gas. A numerical analysis reveals that the spectral chirp generated by the plasma nonlinearity is to a good approximation linear over the whole pulse spectrum and can be compensated in a dispersive delay line. Our calculations predict the generation of 3–4-fs optical pulses with energies of a few milijoules. To our knowledge, these energies are an order of magnitude greater than the pulse energies that have been realized to date in hollow-fiber compressors based exclusively on the nonlinear Kerr effect.

© 1998 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription