Abstract

We report the demonstration of a cw AgGaS2 optical parametric oscillator (OPO). The subharmonic 3ω2ω+ω OPO is configured as a doubly resonant oscillator with weak pump enhancement. The temperature-tuned, noncritically phase-matched crystal is pumped by a diode laser at λp845 nm. Oscillation at λs1267 nm and λi2535 nm is observed at an input threshold power of 60 mW. Crystal thermal loading induces a robust passive self-frequency stabilization of any single-axial-mode pair to the OPO cavity resonance. The conversion efficiency is limited by thermal effects to 2% for a 200-mW pump input.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
    [CrossRef]
  2. Refer, for instance, to R. L. Byer and A. Piskarskas, eds., feature on optical parametric oscillators and amplifiers, J. Opt. Soc. Am. B 10, 1656–1791 (1993); W. R. Bosenberg and R. C. Eckhardt, eds., feature on optical parametric devices, J. Opt. Soc. Am. B 12, 2084–2320 (1995).
    [CrossRef]
  3. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  4. J. D. Beasley, Appl. Opt. 33, 1000 (1994).
    [CrossRef] [PubMed]
  5. J.-J. Zondy, D. Touahri, and O. Acef, J. Opt. Soc. Am. B 14, 2481 (1997).
    [CrossRef]
  6. J.-J. Zondy and D. Touahri, J. Opt. Soc. Am. B 14, 1331 (1997).
    [CrossRef]
  7. K. Stoll, J.-J. Zondy, and O. Acef, Opt. Lett. 22, 1302 (1997).
    [CrossRef]
  8. D. K. Serkland, R. C. Eckardt, and R. L. Byer, Opt. Lett. 19, 1046 (1994).
    [CrossRef] [PubMed]
  9. P. L. Hensen and P. Buchhave, Opt. Lett. 22, 1074 (1997).
    [CrossRef]
  10. C. Richy, K. I. Petsas, E. Giacobino, C. Fabre, and L. Lugiato, J. Opt. Soc. Am. B 12, 456 (1995).
    [CrossRef]

1997 (4)

1995 (1)

1994 (2)

1993 (1)

1984 (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

1968 (1)

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Acef, O.

Beasley, J. D.

Buchhave, P.

Byer, R. L.

D. K. Serkland, R. C. Eckardt, and R. L. Byer, Opt. Lett. 19, 1046 (1994).
[CrossRef] [PubMed]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Eckardt, R. C.

D. K. Serkland, R. C. Eckardt, and R. L. Byer, Opt. Lett. 19, 1046 (1994).
[CrossRef] [PubMed]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Fabre, C.

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Geusic, J. E.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Giacobino, E.

Hensen, P. L.

Levinstein, H. J.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Lugiato, L.

Petsas, K. I.

Richy, C.

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Rubin, J. J.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Serkland, D. K.

Singh, S.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Smith, R. G.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Stoll, K.

Touahri, D.

Van Uitert, L. G.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Zondy, J.-J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Type I 3ω2ω-δ,ω+δ DRO setup. The value of δ is controlled by the crystal temperature. PBS’s, polarizing beam splitters; TEC, thermo-electric cooler; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Time traces of a, the signal–idler DRO output; b, the pump transmission; and c, PZT voltage ramp, showing thermally induced hysteresis on the expanding length slope ΔV>0.

Fig. 3
Fig. 3

DRO output and pump transmission versus cavity-length contraction for a, a slow sweep rate f=5 Hz and b, a faster sweep rate f=30 Hz.

Fig. 4
Fig. 4

Signal–idler output power versus pump power. The DRO oscillates on the highest-intensity mode pair of Fig. 3. Inset, time trace of the manually self-locked output over 50 s.

Fig. 5
Fig. 5

Temperature-tuning curve of the 3:1 OPO divider near Tpm=19.13 °C corresponding to the closest 3:2:1 wavelength ratios, as read within the uncertainties of the pump and signal wavemeters.

Metrics