Abstract

Optical fields with scale- and shape-invariant transverse intensity profiles consisting of a prescribed distribution of bright spots are introduced. Approximations of such fields are demonstrated by means of binary annular-aperture diffractive elements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [Crossref]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [Crossref] [PubMed]
  3. J. Turunen, A. Vasara, and A. T. Friberg, J. Opt. Soc. Am. A 8, 282 (1991).
    [Crossref]
  4. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, Berlin, 1997), Sec. 1.3.6 and Chap. 6.
  5. S. A. Collins, J. Opt. Soc. Am. 60, 1168 (1970).

1991 (1)

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[Crossref]

1970 (1)

Collins, S. A.

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref] [PubMed]

Friberg, A. T.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref] [PubMed]

Turunen, J.

Vasara, A.

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref] [PubMed]

Other (1)

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, Berlin, 1997), Sec. 1.3.6 and Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic arrangement for the generation of propagation-invariant spot arrays: DE, diffractive element with a thin annular aperture; L, collimating lens.

Fig. 2
Fig. 2

(a) Amplitude and (b) phase of the angular spectrum of a double-Bessel field with a1=a2.

Fig. 3
Fig. 3

Evolution of the intensity profile of the double-Bessel field behind lens L.

Fig. 4
Fig. 4

Experimental results: transverse intensity distributions and cross sections (at x=0) of the double-Bessel field at (a) z=20 mm and (b) z=120 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ux,y,z=expiβz02πAϕ×expiαx cos ϕ+y sin ϕdϕ,
AϕAϕexp-iαΔx cos ϕ+Δy sin ϕ.
Ux,y,z=2π expiβzm=1MamJ0αx-Δxm2+y-Δym21/2,
αΔxm-Δxn2+Δym-Δyn21/2x0,
Aϕ=m=1Mam exp-iαΔxm cos ϕ+Δym sin ϕ,
S=I1+I2=8π2a21+J022αΔx+2J02αΔxcosΔφ,
Ux,y,z=expikf+ziλf×R-w/2R+w/2r expikf-zr2/2f2×02πAϕexp-ikrx cos ϕ+y sin ϕ/fdϕdr.

Metrics