Abstract

We describe the operation of an all-optical probe that provides an alternative means of implementing photoacoustic and photothermal investigative techniques, particularly those used in biomedical applications. The probe is based on a transparent, acoustically and thermally sensitive Fabry–Perot polymer film sensor mounted at the end of an optical fiber. We demonstrate the ability of the system to make photoacoustic and photothermal measurements simultaneously and evaluate its photothermal response, using a nonscattering liquid target of known and adjustable absorption coefficient. The acoustic and thermal noise floors were 2  kPa and 6×10-3 °C, respectively, obtained over a 25-MHz measurement bandwidth and 30 signal averages.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Imhoff, B. Zhang, and D. J. S. Birch, in Non-Destructive Evaluation:?Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Vol. 2, pp. 185–236.
  2. A. A. Oraevsky, S. L. Jacques, and F. Tittel, Appl. Opt. 36, 402 (1997).
    [CrossRef] [PubMed]
  3. S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
    [CrossRef] [PubMed]
  4. G. Paltauf and H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997).
    [CrossRef]
  5. P. C. Beard and T. N. Mills, Proc. SPIE 2388, 446 (1995).
    [CrossRef]
  6. P. C. Beard and T. N. Mills, Appl. Opt. 35, 663 (1996).
    [CrossRef] [PubMed]
  7. P. C. Beard and T. N. Mills, Phys. Med. Biol. 42, 177 (1997).
    [CrossRef] [PubMed]
  8. A. L. McKenzie, Phys. Med. Biol. 31, 967 (1986).
    [CrossRef] [PubMed]
  9. F. Pérennès, P. C. Beard, and T. N. Mills, in Horizons de l’Optique 1997 (Société Française d’Optique, Orsay Cedex, France, 1997), p. A-13.

1997 (3)

G. Paltauf and H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997).
[CrossRef]

P. C. Beard and T. N. Mills, Phys. Med. Biol. 42, 177 (1997).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, and F. Tittel, Appl. Opt. 36, 402 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

P. C. Beard and T. N. Mills, Proc. SPIE 2388, 446 (1995).
[CrossRef]

1992 (1)

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

1986 (1)

A. L. McKenzie, Phys. Med. Biol. 31, 967 (1986).
[CrossRef] [PubMed]

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard and T. N. Mills, Phys. Med. Biol. 42, 177 (1997).
[CrossRef] [PubMed]

P. C. Beard and T. N. Mills, Appl. Opt. 35, 663 (1996).
[CrossRef] [PubMed]

P. C. Beard and T. N. Mills, Proc. SPIE 2388, 446 (1995).
[CrossRef]

F. Pérennès, P. C. Beard, and T. N. Mills, in Horizons de l’Optique 1997 (Société Française d’Optique, Orsay Cedex, France, 1997), p. A-13.

Birch, D. J. S.

R. E. Imhoff, B. Zhang, and D. J. S. Birch, in Non-Destructive Evaluation:?Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Vol. 2, pp. 185–236.

Bruggemann, B.

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

Imhoff, R. E.

R. E. Imhoff, B. Zhang, and D. J. S. Birch, in Non-Destructive Evaluation:?Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Vol. 2, pp. 185–236.

Jacques, S. L.

McKenzie, A. L.

A. L. McKenzie, Phys. Med. Biol. 31, 967 (1986).
[CrossRef] [PubMed]

Mills, T. N.

P. C. Beard and T. N. Mills, Phys. Med. Biol. 42, 177 (1997).
[CrossRef] [PubMed]

P. C. Beard and T. N. Mills, Appl. Opt. 35, 663 (1996).
[CrossRef] [PubMed]

P. C. Beard and T. N. Mills, Proc. SPIE 2388, 446 (1995).
[CrossRef]

F. Pérennès, P. C. Beard, and T. N. Mills, in Horizons de l’Optique 1997 (Société Française d’Optique, Orsay Cedex, France, 1997), p. A-13.

Oraevsky, A. A.

Paltauf, G.

G. Paltauf and H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997).
[CrossRef]

Pérennès, F.

F. Pérennès, P. C. Beard, and T. N. Mills, in Horizons de l’Optique 1997 (Société Française d’Optique, Orsay Cedex, France, 1997), p. A-13.

Prahl, S. A.

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

Schmidt-Kloiber, H.

G. Paltauf and H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997).
[CrossRef]

Tittel, F.

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

Zhang, B.

R. E. Imhoff, B. Zhang, and D. J. S. Birch, in Non-Destructive Evaluation:?Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Vol. 2, pp. 185–236.

Appl. Opt. (2)

J. Appl. Phys. (1)

G. Paltauf and H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997).
[CrossRef]

Phys. Med. Biol. (3)

P. C. Beard and T. N. Mills, Phys. Med. Biol. 42, 177 (1997).
[CrossRef] [PubMed]

A. L. McKenzie, Phys. Med. Biol. 31, 967 (1986).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, B. Bruggemann, B. C. Wilson, and R. R. Anderson, Phys. Med. Biol. 37, 1203 (1992).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. C. Beard and T. N. Mills, Proc. SPIE 2388, 446 (1995).
[CrossRef]

Other (2)

R. E. Imhoff, B. Zhang, and D. J. S. Birch, in Non-Destructive Evaluation:?Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Vol. 2, pp. 185–236.

F. Pérennès, P. C. Beard, and T. N. Mills, in Horizons de l’Optique 1997 (Société Française d’Optique, Orsay Cedex, France, 1997), p. A-13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of sensor head for generating and detecting photoacoustic and photothermal signals in a target absorber.

Fig. 2
Fig. 2

Sensor output in response to photoacoustic and photothermal signals generated in an ink–Tris absorber μa=70 cm-1 over different time scales. (a) Photoacoustic signals. X is the initial thermoelastic wave generated immediately adjacent to the sensing film, and Y is the reflection of X from the fiber tip. (b) Increased time scale of (a), showing the photoacoustic signal and onset of the rise of the thermal wave. (c) Expanded time scale, showing the complete thermal wave. Fluence, 0.27 mJ/mm2; pulse duration, 5  ns; repetition rate, 16  Hz; signals averaged over 30 shots.

Fig. 3
Fig. 3

Photothermal signals generated in an ink–Tris absorber for different optical absorption coefficients μa. Inset, relationship between 1/td (where td is the 1/e photothermal decay time) and μa: the dashed line represents predicted relationship. Fluence, 0.27 mJ/mm2; pulse duration, 5  ns; repetition rate, 2  Hz; signals averaged over 30 shots.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

td=1.6/µa2D,

Metrics