Abstract

We report on a novel laser-induced fluorescence triple-integration method (LIFTIME) that is capable of making rapid, continuous fluorescence lifetime measurements by a unique photon-counting technique. The LIFTIME has been convolved with picosecond time-resolved laser-induced fluorescence, which employs a high-repetition-rate mode-locked laser, permitting the eventual monitoring of instantaneous species concentrations in turbulent flames. We verify the technique by application of the LIFTIME to two known fluorescence media, diphenyloxazole (PPO) and quinine sulfate monohydrate (QSM). PPO has a fluorescence lifetime of 1.28  ns, whereas QSM has a fluorescence lifetime that can be varied from 1.0 to 3.0  ns. From these liquid samples we demonstrate that fluorescence lifetime can currently be monitored at a sampling rate of up to 500  Hz with less than 10% uncertainty 1σ.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).
  2. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, Energy Fuels 11, 1092 (1997).
    [CrossRef]
  3. M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, Opt. Lett. 22, 175 (1997).
    [CrossRef] [PubMed]
  4. T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 34, 973 (1995).
    [CrossRef] [PubMed]
  5. R. M. Ballew and J. N. Demas, Anal. Chem. 61, 30 (1989).
    [CrossRef]
  6. A. J. Alfano, Appl. Opt. 28, 23 (1989).
    [CrossRef]
  7. R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
    [CrossRef]
  8. D. V. O’Conner, S. R. Meech, and D. Phillips, Chem. Phys. Lett. 88, 22 (1982).
    [CrossRef]
  9. T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 35, 2125 (1996).
    [CrossRef] [PubMed]

1997 (2)

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, Energy Fuels 11, 1092 (1997).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, Opt. Lett. 22, 175 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

1989 (2)

R. M. Ballew and J. N. Demas, Anal. Chem. 61, 30 (1989).
[CrossRef]

A. J. Alfano, Appl. Opt. 28, 23 (1989).
[CrossRef]

1985 (1)

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

1983 (1)

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

1982 (1)

D. V. O’Conner, S. R. Meech, and D. Phillips, Chem. Phys. Lett. 88, 22 (1982).
[CrossRef]

Alfano, A. J.

A. J. Alfano, Appl. Opt. 28, 23 (1989).
[CrossRef]

Ballew, R. M.

R. M. Ballew and J. N. Demas, Anal. Chem. 61, 30 (1989).
[CrossRef]

Carter, C. D.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, Energy Fuels 11, 1092 (1997).
[CrossRef]

Chewter, K. A.

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

Demas, J. N.

R. M. Ballew and J. N. Demas, Anal. Chem. 61, 30 (1989).
[CrossRef]

Drake, M. C.

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

King, G. B.

Klassen, M. S.

Lampert, R. A.

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

Laurendeau, N. M.

Meech, S. R.

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

D. V. O’Conner, S. R. Meech, and D. Phillips, Chem. Phys. Lett. 88, 22 (1982).
[CrossRef]

O’Conner, D. V.

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

D. V. O’Conner, S. R. Meech, and D. Phillips, Chem. Phys. Lett. 88, 22 (1982).
[CrossRef]

Phillips, D.

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

D. V. O’Conner, S. R. Meech, and D. Phillips, Chem. Phys. Lett. 88, 22 (1982).
[CrossRef]

Pitz, R. W.

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

Reichardt, T. A.

Reisel, J. R.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, Energy Fuels 11, 1092 (1997).
[CrossRef]

Renfro, M. W.

Roberts, A. J.

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

Anal. Chem. (2)

R. M. Ballew and J. N. Demas, Anal. Chem. 61, 30 (1989).
[CrossRef]

R. A. Lampert, K. A. Chewter, D. Phillips, D. V. O’Conner, A. J. Roberts, and S. R. Meech, Anal. Chem. 55, 68 (1983).
[CrossRef]

Appl. Opt. (3)

Chem. Phys. Lett. (1)

D. V. O’Conner, S. R. Meech, and D. Phillips, Chem. Phys. Lett. 88, 22 (1982).
[CrossRef]

Energy Fuels (1)

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, Energy Fuels 11, 1092 (1997).
[CrossRef]

Exp. Fluids (1)

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Graphic representation of the LIFTIME method. D1 is 12.5  ns wide, whereas D2, D3, and D4 are fixed at 3.5  ns. The dashed curve is the impulse response of the PITLIF system.

Fig. 2
Fig. 2

Wire schematic for the LIFTIME system. N’s, NIM inputs from the discriminator; I, start signal input; O’s, start signal outputs, CI’s, channel advance inputs; CO’s, channel advance outputs; PD, photodiode. Unused signals are 50Ω terminated, and 10.0, 6.5, and 3.0  ns represent the delays placed in the respective lines.

Fig. 3
Fig. 3

Calibration of the LIFTIME with convolute-and-compare algorithm by use of the DSA. Error bars are at the 95% confidence interval and include uncertainties caused by temperature fluctuations in the laboratory. The filled circles are the expected calibration with the simulated impulse response function.

Fig. 4
Fig. 4

LIFTIME uncertainty based on the 68% confidence interval versus sampling rate and signal level.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ=Δt/lnD2-D3/D3-D4,
B=D2C2-D4/ΔtC2-1,
A=D2-BΔt/τ1-C,

Metrics