Abstract

A three-dimensional reflectance scanning optical microscope based on the nonlinear optical phenomenon of second-harmonic generation is presented. A mode-locked Ti:sapphire laser producing <90fs pulses at 790 nm was used, and the images were constructed by scanning of an object, which possessed local second-order nonlinearity, relative to a focused spot from the laser. The second-harmonic light at 395 nm generated by the specimen was separated from the fundamental beam by use of dichroic and interference filters and was detected by a photodiode. The technique was then used to characterize the distribution of second-order nonlinearity and microstructure of the nonlinear material lithium triborate.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, Nature (London) 337, 519 (1989).
    [CrossRef]
  2. O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
    [CrossRef] [PubMed]
  3. I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
    [CrossRef] [PubMed]
  4. J. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
    [CrossRef]
  5. T. Jentsch, H. J. Jupner, S. H. Ashworth, and T. Elsaesser, Opt. Lett. 21, 492 (1996).
    [CrossRef]
  6. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano, Appl. Opt. 35, 6810 (1996).
    [CrossRef] [PubMed]
  7. J. Vydra and M. Eich, Appl. Phys. Lett. 72, 275 (1998).
    [CrossRef]
  8. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, Opt. Lett. 22, 1323 (1997).
    [CrossRef]
  9. A. Yariv, Quantum Electronics (Wiley, New York, 1967).
  10. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]

1998 (1)

J. Vydra and M. Eich, Appl. Phys. Lett. 72, 275 (1998).
[CrossRef]

1997 (1)

1996 (2)

1993 (1)

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

1989 (1)

Y. R. Shen, Nature (London) 337, 519 (1989).
[CrossRef]

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

1984 (1)

1978 (1)

J. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Alfano, R. R.

Ashworth, S. H.

Bouevitch, O.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Eich, M.

J. Vydra and M. Eich, Appl. Phys. Lett. 72, 275 (1998).
[CrossRef]

Elsaesser, T.

Fork, R. L.

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Gannaway, J.

J. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Gordon, J. P.

Guo, Y.

Harris, D.

Ho, P. P.

Jentsch, T.

Jupner, H. J.

Lewis, A.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

Liu, F.

Loew, L. M.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

Martinez, O. E.

Pinevsky, I.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

Sacks, P.

Savage, H.

Schantz, S.

Shen, Y. R.

Y. R. Shen, Nature (London) 337, 519 (1989).
[CrossRef]

Sheppard, C. J. R.

J. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Tirksliunas, A.

Vydra, J.

J. Vydra and M. Eich, Appl. Phys. Lett. 72, 275 (1998).
[CrossRef]

Wuskell, J. P.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1967).

Zhadin, N.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Vydra and M. Eich, Appl. Phys. Lett. 72, 275 (1998).
[CrossRef]

Biophys. J. (2)

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, Biophys. J. 65, 672 (1993).
[CrossRef] [PubMed]

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Nature (London) (1)

Y. R. Shen, Nature (London) 337, 519 (1989).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Other (1)

A. Yariv, Quantum Electronics (Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the three-dimensional SHGI reflectance microscope: BS’s beam splitters; HBS, harmonic dichroic beam splitter; I, isolator; IF, interference filter; L, lens f=20 cm; M’s, MD, MHR, mirrors; O, objective (Olympus; N.A., 0.8); P’s, prisms; S, specimen (LBO).

Fig. 2
Fig. 2

SH generation image 70 µm×53 µm of three LBO microcrystals (A–C) embedded in agar. The sample was 100 µm thick, and the image was taken at <50 µm above the mirror (substrate).

Fig. 3
Fig. 3

SH generation image 60 µm×70 µm of LBO (a) crystal point defects (A–E) and (b) crystal fracture defect.

Fig. 4
Fig. 4

Side view of a three-dimensional SH generation image 70 µm×70 µm×30 µm of LBO crystal fragments showing A, terraces on the crystal; B, isolated microcrystallites; and C, columnar stacking of microcrystals on the surface of the large LBO crystal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P2ω=2ω2AZ0/r3sin ΔkL/2ΔkL/22L2d2Pω2,

Metrics