Abstract

We report an experimental demonstration of a photonic microwave shifter using a highly chirped mode-locked fiber laser. The system is based on dispersive compression or expansion of highly chirped optical pulses that are amplitude modulated by the microwave signal. Using this technique, we demonstrated frequency shifting of a microwave signal from 10  GHz down to 5  GHz and up to 25  GHz.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Nuss, W. H. Know, and U. Koren, Electron. Lett. 32, 1311 (1996).
    [CrossRef]
  2. M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
    [CrossRef]
  3. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
    [CrossRef]
  4. M. L. Dennis, M. A. Putnam, J. U. Kang, T.-E. Tsai, I. N. Duling, and E. J. Friebele, Opt. Lett. 22, 1362 (1997).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  6. L. T. Nichols, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theory Tech. 45, 1384 (1997).
    [CrossRef]

1997 (3)

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

L. T. Nichols, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theory Tech. 45, 1384 (1997).
[CrossRef]

M. L. Dennis, M. A. Putnam, J. U. Kang, T.-E. Tsai, I. N. Duling, and E. J. Friebele, Opt. Lett. 22, 1362 (1997).
[CrossRef]

1996 (1)

M. C. Nuss, W. H. Know, and U. Koren, Electron. Lett. 32, 1311 (1996).
[CrossRef]

1994 (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
[CrossRef]

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
[CrossRef]

Dennis, M. L.

Duling, I. N.

Esman, R. D.

L. T. Nichols, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theory Tech. 45, 1384 (1997).
[CrossRef]

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

Friebele, E. J.

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
[CrossRef]

Kang, J. U.

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
[CrossRef]

Know, W. H.

M. C. Nuss, W. H. Know, and U. Koren, Electron. Lett. 32, 1311 (1996).
[CrossRef]

Koren, U.

M. C. Nuss, W. H. Know, and U. Koren, Electron. Lett. 32, 1311 (1996).
[CrossRef]

Nichols, L. T.

L. T. Nichols, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theory Tech. 45, 1384 (1997).
[CrossRef]

Nuss, M. C.

M. C. Nuss, W. H. Know, and U. Koren, Electron. Lett. 32, 1311 (1996).
[CrossRef]

Putnam, M. A.

Tsai, T.-E.

Williams, K. J.

L. T. Nichols, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theory Tech. 45, 1384 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, Appl. Phys. Lett. 64, 270 (1994).
[CrossRef]

Electron. Lett. (2)

M. C. Nuss, W. H. Know, and U. Koren, Electron. Lett. 32, 1311 (1996).
[CrossRef]

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

L. T. Nichols, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theory Tech. 45, 1384 (1997).
[CrossRef]

Opt. Lett. (1)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ratio between the shifted and the initial RF modulation frequency as a function of total dispersion of the fiber [e.g., Dz ps/nm] for different values of R=t0/Δλ ps/nm.

Fig. 2
Fig. 2

Schematic of the photonic RF shifter setup. P.B.S., polarizing beam splitter; B.S., beam splitter; E-O, electro-optic.

Fig. 3
Fig. 3

Temporal traces of (a) an unshifted RF signal, (b) a downshifted RF signal, and (c) an upshifted RF signal obtained with a 50-GHz sampling scope.

Fig. 4
Fig. 4

RF spectra corresponding to the temporal signals shown in Fig.  2.

Fig. 5
Fig. 5

Ratio between the shifted and the initial RF modulation frequencies as a function of total dispersion of the fibers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u0,t=E0 cosωmtexp-1+iC2t2t02,
iuz-12β22ut2=0,
uz,t=E0,z cosωm4Aδtexpt24δ2,
ω=ωm11±2ΔλDzt01/2,

Metrics