Abstract

We derive expressions that describe the maximum and minimum envelopes of mode-partition noise converted into intensity noise through an unbalanced interferometer, using a simple model of a multimode laser diode, and experimentally confirm the expressions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann and E. Weidel, IEEE J. Quantum Electron. QE-17, 1251–1256 (1981).
    [CrossRef]
  2. R. Wentworth, “Optical noise in interferometric systems containing strongly unbalanced paths,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).
  3. I. Kim and J. Blake, Opt. Lett. 20, 731 (1995).
    [CrossRef] [PubMed]
  4. S. Inoue and Y. Yamamoto, Opt. Lett. 22, 328 (1997).
    [CrossRef] [PubMed]
  5. J. U. de Arruda and J. Blake, Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 590.
  6. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

1997

1995

1981

K. Petermann and E. Weidel, IEEE J. Quantum Electron. QE-17, 1251–1256 (1981).
[CrossRef]

Blake, J.

I. Kim and J. Blake, Opt. Lett. 20, 731 (1995).
[CrossRef] [PubMed]

J. U. de Arruda and J. Blake, Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 590.

de Arruda, J. U.

J. U. de Arruda and J. Blake, Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 590.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Inoue, S.

Kim, I.

Petermann, K.

K. Petermann and E. Weidel, IEEE J. Quantum Electron. QE-17, 1251–1256 (1981).
[CrossRef]

Weidel, E.

K. Petermann and E. Weidel, IEEE J. Quantum Electron. QE-17, 1251–1256 (1981).
[CrossRef]

Wentworth, R.

R. Wentworth, “Optical noise in interferometric systems containing strongly unbalanced paths,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

Yamamoto, Y.

IEEE J. Quantum Electron.

K. Petermann and E. Weidel, IEEE J. Quantum Electron. QE-17, 1251–1256 (1981).
[CrossRef]

Opt. Lett.

Other

R. Wentworth, “Optical noise in interferometric systems containing strongly unbalanced paths,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

J. U. de Arruda and J. Blake, Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 590.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coherence function γτ and mode-partition noise interferometric conversion function envelopes for a multimode laser diode. τ is the interferometer delay time.

Fig. 2
Fig. 2

Polarimetric noise interferometer. L, length of the PM fiber.

Fig. 3
Fig. 3

Scanned photograph of the fringes of noise seen on the screen of the oscilloscope when L=1.5 m.

Fig. 4
Fig. 4

(a) Coherence function, (b) maximum noise envelope, (c) minimum noise envelope.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Iinνi=Pνi.
Iout=iIinνi1+cos 2πνiτ2,
σIout2=Iout2-Iout2.
Iout2=¼iPνi1+cos 2πνiτ2,
Iout2=¼iPνi1+cos 2πνiτ2.
γτ=Iνexp-j2πντdν=iPνiexp-j2πνiτ.
Reγτ=iPνicos 2πνiτ.
σIout2=Reγ2τ+1-2Reγτ2.
ReγT=γTcos2πν¯T+αT,
ατ=0, α2τ=0,
σIout2=γ2τ-γτ2×cos 4πν¯τ+1-γτ2,
σIout min2=1-γ2τ
σIout max2=1-2γτ2+γ2τ.

Metrics