Abstract

The imaging properties of the transmission-illumination mode of a scanning near-field optical microscope are investigated. Three-dimensional calculations of the power transmitted into classically allowed and forbidden regions for a nonsymmetrically positioned amplitude object are implemented by use of the finite-difference time-domain solution of Maxwell’s equations. The evolution of the images with the distance from the object as well as the effect of the polarization of the illumination is shown. The computations show that for applications involving the imaging of an amplitude object, the use of the allowed light is preferred. Collection of light from both the allowed and the forbidden zones leads to degraded contrast and resolution.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
    [CrossRef]
  2. L. Novotny, J. Opt. Soc. Am. A 14, 91 (1997).
    [CrossRef]
  3. L. Novotny, D. W. Pohl, and P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
    [CrossRef]
  4. L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
    [CrossRef]
  5. D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
    [CrossRef]
  6. O. J. F. Martin, A. Dereux, and C. Girard, J. Opt. Soc. Am. A 11, 1073 (1994).
    [CrossRef]
  7. O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
    [CrossRef] [PubMed]
  8. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  9. D. A. Christensen, Ultramicroscopy 57, 189 (1993).
    [CrossRef]
  10. H. Furukawa and S. Kawata, Opt. Commun. 132, 170 (1996).
    [CrossRef]
  11. A. J. Ward and J. B. Pendry, J. Mod. Opt. 44, 1703 (1997).
    [CrossRef]
  12. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]

1997 (2)

L. Novotny, J. Opt. Soc. Am. A 14, 91 (1997).
[CrossRef]

A. J. Ward and J. B. Pendry, J. Mod. Opt. 44, 1703 (1997).
[CrossRef]

1996 (2)

H. Furukawa and S. Kawata, Opt. Commun. 132, 170 (1996).
[CrossRef]

D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
[CrossRef]

1995 (3)

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
[CrossRef]

1994 (3)

1993 (1)

D. A. Christensen, Ultramicroscopy 57, 189 (1993).
[CrossRef]

Berenger, J.-P.

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Christensen, D. A.

D. A. Christensen, Ultramicroscopy 57, 189 (1993).
[CrossRef]

Dereux, A.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, and C. Girard, J. Opt. Soc. Am. A 11, 1073 (1994).
[CrossRef]

Furukawa, H.

H. Furukawa and S. Kawata, Opt. Commun. 132, 170 (1996).
[CrossRef]

Girard, C.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, and C. Girard, J. Opt. Soc. Am. A 11, 1073 (1994).
[CrossRef]

Hecht, B.

D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
[CrossRef]

B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
[CrossRef]

Heinzelmann, H.

D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
[CrossRef]

B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
[CrossRef]

Kawata, S.

H. Furukawa and S. Kawata, Opt. Commun. 132, 170 (1996).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, and C. Girard, J. Opt. Soc. Am. A 11, 1073 (1994).
[CrossRef]

Novotny, L.

L. Novotny, J. Opt. Soc. Am. A 14, 91 (1997).
[CrossRef]

D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
[CrossRef]

B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, and P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
[CrossRef]

Pendry, J. B.

A. J. Ward and J. B. Pendry, J. Mod. Opt. 44, 1703 (1997).
[CrossRef]

Pohl, D. W.

D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
[CrossRef]

B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, and P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
[CrossRef]

Regli, P.

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Ward, A. J.

A. J. Ward and J. B. Pendry, J. Mod. Opt. 44, 1703 (1997).
[CrossRef]

J. Comput. Phys. (1)

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Mod. Opt. (1)

A. J. Ward and J. B. Pendry, J. Mod. Opt. 44, 1703 (1997).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

H. Furukawa and S. Kawata, Opt. Commun. 132, 170 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

Thin Solid Films (1)

D. W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann, Thin Solid Films 273, 161 (1996).
[CrossRef]

Ultramicroscopy (3)

B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, Ultramicroscopy 61, 99 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
[CrossRef]

D. A. Christensen, Ultramicroscopy 57, 189 (1993).
[CrossRef]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

FDTD geometry of the TNOM model. All dimensions are in nanometers.

Fig. 2
Fig. 2

FDTD-computed TNOM electric-field distribution as a function of the object distance from the axis of the glass taper: (a) 0  nm, (b) 16  nm, (c) 32  nm, (d) 64  nm. The dynamic range is saturated to render weak intensity values visible.

Fig. 3
Fig. 3

FDTD-computed TNOM images generated at an observation locus 80  nm below the object in (a) allowed light and (b) forbidden light. Dashed curves, p polarization; solid curves, s polarization; thick solid lines, geometric profiles of the 64-nm-wide sample; filled circles, locations of the corresponding visualizations in Fig.  2.

Fig. 4
Fig. 4

FDTD-computed TNOM images generated at an observation locus 200  nm below the object in (a) allowed light and (b) forbidden light. The curves (lines) are the same as in Fig.  3.

Metrics