Abstract

Wave-front correction and focal spot improvement of femtosecond laser beams have been achieved, for the first time to our knowledge, with a deformable mirror with an on-line single-shot three-wave lateral shearing interferometer diagnostic. Wave-front distortions of a 100-fs laser that are due to third-order nonlinear effects have been compensated for. This technique, which permits correction in a straightforward process that requires no feedback loop, is also used on a 10-TW Ti:sapphire–Nd:phosphate glass laser in the subpicosecond regime. We also demonstrate that having a focal spot close to the diffraction limit does not constitute a good criterion for the quality of the laser in terms of peak intensity.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. G. Mourou and D. Umstadter, Phys. Fluids B 4, 2315 (1992).
    [CrossRef]
  3. P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996).
    [CrossRef]
  4. J. C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, Opt. Lett. 23, 621 (1998).
    [CrossRef]
  5. J. Primot, Appl. Opt. 32, 6242 (1993).
    [CrossRef] [PubMed]
  6. J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
    [CrossRef]
  7. D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and C. Cotton, Opt. Lett. 20, 2114 (1995).
    [CrossRef] [PubMed]
  8. G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
    [CrossRef]

1998 (1)

1997 (2)

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

1996 (1)

P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996).
[CrossRef]

1995 (1)

1993 (1)

1992 (1)

G. Mourou and D. Umstadter, Phys. Fluids B 4, 2315 (1992).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Bogusch, C.

Chanteloup, J. C.

Cotton, C.

Druon, F.

Du, D.

Forster, E.

P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996).
[CrossRef]

Fracasso, B.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Gibbon, P.

P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996).
[CrossRef]

Heggarty, K.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Kane, S.

Korn, G.

Maksimchuk, A.

Middelhoek, S.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Mourou, G.

Nantel, M.

Primot, J.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

J. Primot, Appl. Opt. 32, 6242 (1993).
[CrossRef] [PubMed]

Sarro, P. M.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Sogno, L.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Umstadter, D.

G. Mourou and D. Umstadter, Phys. Fluids B 4, 2315 (1992).
[CrossRef]

Vdovin, G.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Appl. Opt. (1)

Opt. Commun. (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Eng. (2)

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Fluids B (1)

G. Mourou and D. Umstadter, Phys. Fluids B 4, 2315 (1992).
[CrossRef]

Plasma Phys. Control. Fusion (1)

P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for measurement and correction of the wave front. The deformable mirror is imaged on the CCD, so the wave front is measured in this plane, which is considered to be the near field of the laser beam. A telescope made with two lenses f1, 1 m; f2, 25 cm is used to create a Fourier plane. This plane is the far field of the laser beam, where a pinhole can be inserted to spatially clean the phase of the beam. ATWLSI; achromatic three-wave lateral shearing interferometer.

Fig. 2
Fig. 2

Experimental results for correction of a wave front that is distorted by third-order nonlinear effects: (a) intensity profile of the distorted beam, (b) measured phase profile of the distorted beam (amplitude, 0.67λ), (c) calculated phase profile applied to the deformable mirror for wave-front correction, (d) measured phase profile of the corrected beam (amplitude, 0.28λ).

Fig. 3
Fig. 3

(a) Experimental results for a distorted wave front (Phase A) and a corrected wave front (Phase B) for the 10-TW Ti:sapphire–Nd:phosphate laser, with peak-to-peak values of, respectively, 0.7λ and 0.3λ. The figure below the phases represents line-outs of the focal spots calculated with the intensity and phase measurements: A with Phase A, B with Phase B, and C with a flat phase. For each of these curves the FWHM normalized to the diffraction-limited spot is indicated. (b) Experimental spot sizes A, without correction and B, with correction. The figure below spots A and B represents line-outs of these focal spots.

Metrics