Abstract

A high-repetition-rate femtosecond laser system operating, for the first time to our knowledge, in the spectral region near 200 nm is described. Frequency quadrupling of a mode-locked Ti:sapphire laser results in maximum average powers of 6 mW (165-fs pulses) and 15 mW (340-fs pulses) at 82 MHz. The shortest wavelength achieved is 193.7 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, Opt. Lett. 18, 2035 (1993).
    [Crossref]
  2. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, Opt. Lett. 19, 1538 (1994).
    [Crossref] [PubMed]
  3. A. Nebel and R. Beigang, Opt. Lett. 16, 1729 (1991); Opt. Commun. 94, 369 (1992).
    [Crossref] [PubMed]
  4. M. T. Reiten, R. A. Cheville, and N. J. Halas, Opt. Commun. 110, 645 (1994).
    [Crossref]
  5. INRAD Product Catalog (INRAD, Northvale, N.J., 1997).
  6. S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
    [Crossref]
  7. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580, 2928 (1993).
    [Crossref]
  8. K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
    [Crossref]

1997 (1)

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

1994 (2)

1993 (2)

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, Opt. Lett. 18, 2035 (1993).
[Crossref]

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580, 2928 (1993).
[Crossref]

1991 (1)

1986 (1)

K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
[Crossref]

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580, 2928 (1993).
[Crossref]

Beigang, R.

Biraben, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

Bourzeix, S.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

Cheville, R. A.

M. T. Reiten, R. A. Cheville, and N. J. Halas, Opt. Commun. 110, 645 (1994).
[Crossref]

de Beauvoir, B.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

de Tomasi, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

Halas, N. J.

M. T. Reiten, R. A. Cheville, and N. J. Halas, Opt. Commun. 110, 645 (1994).
[Crossref]

Julien, L.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

Kato, K.

K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
[Crossref]

Kittelmann, O.

Korn, G.

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580, 2928 (1993).
[Crossref]

Nebel, A.

Nez, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

Noack, F.

Petrov, V.

Reiten, M. T.

M. T. Reiten, R. A. Cheville, and N. J. Halas, Opt. Commun. 110, 645 (1994).
[Crossref]

Ringling, J.

Seifert, F.

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580, 2928 (1993).
[Crossref]

Squier, J.

IEEE J. Quantum Electron. (2)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580, 2928 (1993).
[Crossref]

K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
[Crossref]

Opt. Commun. (2)

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, Opt. Commun. 133, 239 (1997).
[Crossref]

M. T. Reiten, R. A. Cheville, and N. J. Halas, Opt. Commun. 110, 645 (1994).
[Crossref]

Opt. Lett. (3)

Other (1)

INRAD Product Catalog (INRAD, Northvale, N.J., 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: SH generation (SHG), 1.5-mm-thick LBO crystal θ=90°,φ=32° with dual antireflection coating for 800/400 nm; TH generation (THG), 0.3-mm-thick BBO crystal θ=44.3°; FH generation (FHG), 0.1- or 0.3-mm-thick BBO crystal θ=65°; DF generation (DFG), 0.04-mm-thick BBO crystal θ=65°. D’s, delay lines; PR, off-plane polarization rotation; DM’s, dichroic mirrors; F’s, colored-glass filters; Si, Si photodiode with the window removed. The focal lengths of the lenses are L1=4 cm, L2=8 cm, L3=6 cm, L4L8=5 cm, and L9=-20 cm. A–C, positions of power control.

Fig. 2
Fig. 2

Spectra at the FH, showing the tunability achieved and the corresponding average power (dashed curve and squares) obtained with the 0.1-mm-thick FH-generation crystal. Note that the achieved average power levels exceed the results obtained with a 1-kHz amplified system at nearly equal pulse duration.1

Fig. 3
Fig. 3

Cross-correlation trace between the FH pulse at 204 nm and a reference beam at the fundamental obtained by use of DF generation. The 0.1-mm-thick FH-generation crystal was used in this case.

Metrics