Abstract

Tunable 90-ps 15.617.6µm coherent radiation was generated by means of difference-frequency mixing in diffusion-bonded-stacked GaAs. The sample consisted of 24 alternately rotated layers with a total length of 6 mm and with low optical loss to achieve third-order quasi-phase matching. The wavelength-tuning curve was close to the theoretical prediction, demonstrating that the bonding process maintained nonlinear optical phase matching over the entire interaction length. Maximum conversion efficiency of 0.7%, or 5% internal quantum efficiency, was measured at 16.6 µm, consistent with the theoretical predictions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription