Abstract

Tunable 90-ps 15.617.6µm coherent radiation was generated by means of difference-frequency mixing in diffusion-bonded-stacked GaAs. The sample consisted of 24 alternately rotated layers with a total length of 6 mm and with low optical loss to achieve third-order quasi-phase matching. The wavelength-tuning curve was close to the theoretical prediction, demonstrating that the bonding process maintained nonlinear optical phase matching over the entire interaction length. Maximum conversion efficiency of 0.7%, or 5% internal quantum efficiency, was measured at 16.6 µm, consistent with the theoretical predictions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
    [CrossRef]
  2. D. E. Thompson, J. D. McMullen, and D. B. Anderson, Appl. Phys. Lett. 29, 113 (1976).
    [CrossRef]
  3. D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
    [CrossRef]
  4. K. L. Vodopyanov and V. Chazapis, Opt. Commun. 135, 98 (1997).
    [CrossRef]
  5. R. L. Byer and R. L. Herbst, in Nonlinear Infrared GenerationY.-R. Shen, ed., Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 81.
    [CrossRef]
  6. D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
    [CrossRef]
  7. D. Zheng, “Tunable infrared generation with diffusion-bonded stacked GaAs,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1998).

1997 (2)

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

K. L. Vodopyanov and V. Chazapis, Opt. Commun. 135, 98 (1997).
[CrossRef]

1993 (1)

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

1992 (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

1976 (1)

D. E. Thompson, J. D. McMullen, and D. B. Anderson, Appl. Phys. Lett. 29, 113 (1976).
[CrossRef]

Anderson, D. B.

D. E. Thompson, J. D. McMullen, and D. B. Anderson, Appl. Phys. Lett. 29, 113 (1976).
[CrossRef]

Byer, R. L.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

R. L. Byer and R. L. Herbst, in Nonlinear Infrared GenerationY.-R. Shen, ed., Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 81.
[CrossRef]

Chazapis, V.

K. L. Vodopyanov and V. Chazapis, Opt. Commun. 135, 98 (1997).
[CrossRef]

Eckardt, R. C.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

Feigelson, R. S.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

Fejer, M. M.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

Gordon, L. A.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

Herbst, R. L.

R. L. Byer and R. L. Herbst, in Nonlinear Infrared GenerationY.-R. Shen, ed., Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 81.
[CrossRef]

McMullen, J. D.

D. E. Thompson, J. D. McMullen, and D. B. Anderson, Appl. Phys. Lett. 29, 113 (1976).
[CrossRef]

Roberts, D. A.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Route, R. K.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

Thompson, D. E.

D. E. Thompson, J. D. McMullen, and D. B. Anderson, Appl. Phys. Lett. 29, 113 (1976).
[CrossRef]

Vodopyanov, K. L.

K. L. Vodopyanov and V. Chazapis, Opt. Commun. 135, 98 (1997).
[CrossRef]

Woods, G. L.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

Wu, Y. S.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

Zheng, D.

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

D. Zheng, “Tunable infrared generation with diffusion-bonded stacked GaAs,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1998).

Appl. Phys. Lett. (1)

D. E. Thompson, J. D. McMullen, and D. B. Anderson, Appl. Phys. Lett. 29, 113 (1976).
[CrossRef]

Electron. Lett. (1)

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

J. Electrochem. Soc. (1)

D. Zheng, L. A. Gordon, Y. S. Wu, R. K. Route, M. M. Fejer, R. L. Byer, and R. S. Feigelson, J. Electrochem. Soc. 144, 1439 (1997).
[CrossRef]

Opt. Commun. (1)

K. L. Vodopyanov and V. Chazapis, Opt. Commun. 135, 98 (1997).
[CrossRef]

Other (2)

R. L. Byer and R. L. Herbst, in Nonlinear Infrared GenerationY.-R. Shen, ed., Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 81.
[CrossRef]

D. Zheng, “Tunable infrared generation with diffusion-bonded stacked GaAs,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus for DFG with DBS GaAs. A double-pass type II phase-matched ZGP OPG pumped by single pulses of a 2.8µm mode-locked, Q-switched Er:Cr:YSGG laser generated input radiation for the DFG process. The InSb wafer filters out input radiation. A liquid-nitrogen-cooled mercury cadmium telluride (MCT) photoconductive detector detects the DFG output.

Fig. 2
Fig. 2

Optical loss of the 24-layer DBS GaAs device. It has an average layer thickness of 252 µm for third-order quasi-phase-matched DFG of 16.6µm radiation by means of mixing 4.79- and 6.74µm inputs. The optical absorption of a 1-cm-long GaAs single crystal is used as a reference.

Fig. 3
Fig. 3

Theoretical effective nonlinear coefficient deff as a function of the angle between the pump-beam polarization and the GaAs [110] direction (at normal incidence). For curve a, it is assumed that the input beams have the orthogonal polarizations; for curve b, that the polarizations are parallel. The normalization factor 3π/2 is due to third-order quasi-phase matching.

Fig. 4
Fig. 4

Theoretical wavelength-tuning curve and measured data points. Optical loss was taken into account in the theoretical tuning curve. The inputs had linewidths of 1015 cm-1, comparable with the DBS GaAs acceptance linewidth of 16.4 cm-1, so the measured tuning curve is broader than the theoretical prediction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IiIs0=ωiωsΓ2L2exp-αiLΔαL/22+ΔkL2×1-exp-ΔαL22+4exp-ΔαL2sin2ΔkL2,
Γ2=2ωiωsn3c30deff2Ip,

Metrics