Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-speed properties of a phase-modulation scheme based on electromagnetically induced transparency

Not Accessible

Your library or personal account may give you access

Abstract

Recently a cross-phase modulation scheme that yields giant Kerr nonlinearities by use of an electromagnetically induced transparency (EIT) was proposed [Schmidt and Imamoǧlu, Opt. Lett. 21, 1936 (1996)]. We analyze the high-speed properties of this scheme for short-pulse propagation. We discuss the relevant losses in this system and show that for short pulses one-photon losses are dominant. We demonstrate that over the entire bandwidth the attainable phase shift in an EIT scheme with a quasi-cw coupling field is orders of magnitude higher than in a conventional three-level scheme or in EIT schemes, in which matched pulses are used to create the transparency.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Intracavity electromagnetically induced transparency

Mikhail D. Lukin, Michael Fleischhauer, Marlan O. Scully, and Vladimir L. Velichansky
Opt. Lett. 23(4) 295-297 (1998)

Electromagnetically induced transparency via electron spin coherence in a quantum well waveguide

Tao Li, Hailin Wang, N.H. Kwong, and R. Binder
Opt. Express 11(24) 3298-3303 (2003)

Efficient hyper-Raman scattering in resonant coherent media

Ying Wu, Lingling Wen, and Yifu Zhu
Opt. Lett. 28(8) 631-633 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved