Abstract

A novel frequency-swept ultrasound-modulated optical tomography technique was developed to image scattering media. A frequency-swept ultrasonic wave was used to modulate the laser light passing through a scattering medium. The modulated light was received by an optical detector and was heterodyned with a reference frequency sweep. The heterodyned signal was recorded in the time domain and was then analyzed in the frequency domain to yield a one-dimensional image along the ultrasonic axis. Multiple one-dimensional images obtained at various positions perpendicular to the ultrasonic axis were combined to yield a two-dimensional tomographic image of the medium.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. L.-H. Wang, S. L. Jacques, and X.-M. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  3. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. A 14, 1151 (1997).
    [CrossRef]
  4. L.-H. Wang and X.-M. Zhao, Appl. Opt. 36, 7277 (1997).
    [CrossRef]
  5. A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
    [CrossRef]
  6. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
    [CrossRef] [PubMed]
  7. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
    [CrossRef]
  8. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]

1997 (2)

1996 (1)

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

1995 (3)

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, and X.-M. Zhao, Opt. Lett. 20, 629 (1995).
[CrossRef] [PubMed]

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Appledorn, C. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
[CrossRef] [PubMed]

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Esenaliev, R.

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

Fang, Y. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
[CrossRef] [PubMed]

Genack, A. Z.

Jacques, S. L.

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

L.-H. Wang, S. L. Jacques, and X.-M. Zhao, Opt. Lett. 20, 629 (1995).
[CrossRef] [PubMed]

Kempe, M.

Kruger, R. A.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
[CrossRef] [PubMed]

Larionov, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Liu, P.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
[CrossRef] [PubMed]

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Oraevsky, A.

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

Ostermeyer, M. R.

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

Tittel, F. K.

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Wang, L.-H.

L.-H. Wang and X.-M. Zhao, Appl. Opt. 36, 7277 (1997).
[CrossRef]

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

L.-H. Wang, S. L. Jacques, and X.-M. Zhao, Opt. Lett. 20, 629 (1995).
[CrossRef] [PubMed]

Zaslavsky, D.

Zhao, X.-M.

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Med. Phys. 22, 1605 (1995).
[CrossRef] [PubMed]

Opt. Lett. (1)

Physica B (1)

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Proc. SPIE (2)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

A. Oraevsky, R. Esenaliev, F. K. Tittel, M. R. Ostermeyer, L.-H. Wang, and S. L. Jacques, Proc. SPIE 2681, 277 (1996).
[CrossRef]

Other (1)

R. R. Alfano and J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the experimental setup.

Fig. 2
Fig. 2

Frequency spectrum of the heterodyned frequency-swept ultrasound-modulated optical signal when the object was (A) far from the ultrasonic axis and (B) on the ultrasonic axis.

Fig. 3
Fig. 3

2D tomographic image of the object buried (A) in clear water and (B) in a scattering medium. The object was 8.4 mm×1.6 mm in size.

Fig. 4
Fig. 4

(A) Cross-sectional view of the object buried in a scattering medium. (B) 1D image of the scattering medium horizontally across the center of the object as indicated by the horizontal dashed line in (A). (C) 1D image of the scattering medium vertically across the center of the object as indicated by the vertical dashed line in (A). (D) 2D tomographic image of the object buried in a scattering medium. The object was 6 mm×2 mm in size.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

fst=as+bt,
fst, z=as+bt-z-z0vs,
frt=ar+bt,
fht, z=fst, z-frt=as-ar-bz-z0vs,
Δfh=bvsΔz,

Metrics