Abstract

Spatial and temporal characteristics of a 128×128 zero-twist nematic liquid-crystal spatial light modulator are investigated for wave-front generation at a wavelength of 632.8  nm. The modulator is found to have the capability of producing at least eight phase levels between 0 and 2π, and the rate of arbitrary phase modulation is limited to approximately 4.5  Hz. Wave-front generation of the first 55  Zernike polynomials is demonstrated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Efron, Spatial Light Modulator Technology (Dekker, New York, 1995).
  2. G. D. Love, Appl. Opt. 36, 1517 (1997).
    [CrossRef] [PubMed]
  3. L. Thibos and A. Bradley, Optom. Vis. Sci. 74, 581 (1997).
    [CrossRef] [PubMed]
  4. A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
    [CrossRef]
  5. J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
    [CrossRef]
  6. K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
    [CrossRef]
  7. Boulder Nonlinear Systems, Inc., 1898 South Flatiron Court, Boulder, Colo. 80301.
  8. J. de Bougrenet de la Tocnaye and L. Dupont, Appl. Opt. 36, 1730 (1997).
    [CrossRef] [PubMed]
  9. V. Dorezyuk, A. Naumov, and V. Shmal’gauzen, Sov. Phys. Tech. Phys. 34, 1389 (1989).
  10. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1989).

1997 (6)

G. D. Love, Appl. Opt. 36, 1517 (1997).
[CrossRef] [PubMed]

L. Thibos and A. Bradley, Optom. Vis. Sci. 74, 581 (1997).
[CrossRef] [PubMed]

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
[CrossRef]

K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
[CrossRef]

J. de Bougrenet de la Tocnaye and L. Dupont, Appl. Opt. 36, 1730 (1997).
[CrossRef] [PubMed]

1989 (1)

V. Dorezyuk, A. Naumov, and V. Shmal’gauzen, Sov. Phys. Tech. Phys. 34, 1389 (1989).

Bauchert, K.

K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1989).

Bradley, A.

L. Thibos and A. Bradley, Optom. Vis. Sci. 74, 581 (1997).
[CrossRef] [PubMed]

Browne, S.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
[CrossRef]

de Bougrenet de la Tocnaye, J.

Dorezyuk, V.

V. Dorezyuk, A. Naumov, and V. Shmal’gauzen, Sov. Phys. Tech. Phys. 34, 1389 (1989).

Dupont, L.

Efron, U.

U. Efron, Spatial Light Modulator Technology (Dekker, New York, 1995).

Gonglewski, J.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
[CrossRef]

Highland, R.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
[CrossRef]

Kudryashov, A.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
[CrossRef]

Liang, J.

Love, G. D.

McKnight, D.

K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
[CrossRef]

Miller, D. T.

Naumov, A.

V. Dorezyuk, A. Naumov, and V. Shmal’gauzen, Sov. Phys. Tech. Phys. 34, 1389 (1989).

Serati, S.

K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
[CrossRef]

Sharp, G.

K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
[CrossRef]

Shmal’gauzen, V.

V. Dorezyuk, A. Naumov, and V. Shmal’gauzen, Sov. Phys. Tech. Phys. 34, 1389 (1989).

Thibos, L.

L. Thibos and A. Bradley, Optom. Vis. Sci. 74, 581 (1997).
[CrossRef] [PubMed]

Williams, D. R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1989).

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, Opt. Commun. 141, 247 (1997).
[CrossRef]

Optom. Vis. Sci. (1)

L. Thibos and A. Bradley, Optom. Vis. Sci. 74, 581 (1997).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Bauchert, S. Serati, G. Sharp, and D. McKnight, Proc. SPIE 3073, 170 (1997).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

V. Dorezyuk, A. Naumov, and V. Shmal’gauzen, Sov. Phys. Tech. Phys. 34, 1389 (1989).

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1989).

Boulder Nonlinear Systems, Inc., 1898 South Flatiron Court, Boulder, Colo. 80301.

U. Efron, Spatial Light Modulator Technology (Dekker, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fizeau interferometer used to investigate spatial characteristics of the LC SLM.

Fig. 2
Fig. 2

Demonstration of eight phase-level capability: (a)  test image loaded to the LC SLM and (b)  the theoretical and (c)  the measured interferograms produced by the phase image.

Fig. 3
Fig. 3

Temporal response of the LC SLM for a square-wave input between the phase values: (a)  0 and π/4 with a period of 98  ms, (b)  0 and 7π/4 with a period of 390  ms.

Fig. 4
Fig. 4

Demonstration of wave-front-generation capability: The first column contains quantized phase images loaded to the LC SLM, and the second and third columns contain a theoretical and a measured interferogram, respectively, corresponding to each phase image. Each row represents a different Zernike polynomial [see Eqs.  (1)].

Tables (2)

Tables Icon

Table 1 Pixel Values Corresponding to Phase Levels between 0 and 2 π

Tables Icon

Table 2 Response Times for the LC SLM

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Im8V31ρ sinθ, ρ cosθ=8ρ3ρ2-2sinθ,  Im10V42ρ sinθ, ρ cosθ=10ρ24ρ2-3sin2θ,  Im12V55ρ sinθ, ρ cosθ=12ρ5 sin5θ,

Metrics