Abstract

Bandwidth and peak efficiency are enhanced for wavelength conversion based on induced modulation instability by use of dispersion-shifted fiber in which the nonlinearity n2/Aeff is enhanced by a factor of 4.5 over that of conventional dispersion-shifted fiber. We experimentally obtain a peak conversion efficiency as high as 28  dB over a 40-nm bandwidth with 600  mW of peak pump power. Considerations for further enhancement of fiber-based wavelength conversion are also discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovksy, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  2. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 15, 2051 (1997).
    [CrossRef]
  3. S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
    [CrossRef]
  4. R. Sabella and E. Iannone, IEEE J. Sel. Areas Commun. 14, 968 (1996).
    [CrossRef]
  5. A. E. Kelly, D. D. Marcenac, and D. Neset, Electron. Lett. 33, 2123 (1997).
    [CrossRef]
  6. R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
    [CrossRef]
  7. K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
    [CrossRef]
  8. M. J. Holmes, D. L. Williams, and R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
    [CrossRef]
  9. W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
    [CrossRef]

1997

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 15, 2051 (1997).
[CrossRef]

A. E. Kelly, D. D. Marcenac, and D. Neset, Electron. Lett. 33, 2123 (1997).
[CrossRef]

1996

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

R. Sabella and E. Iannone, IEEE J. Sel. Areas Commun. 14, 968 (1996).
[CrossRef]

M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovksy, Opt. Lett. 21, 573 (1996).
[CrossRef] [PubMed]

1995

M. J. Holmes, D. L. Williams, and R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

1994

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

1992

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

1982

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Andrekson, P. A.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 15, 2051 (1997).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Chi, S.

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Chiang, T.-K.

Hedekvist, P. O.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 15, 2051 (1997).
[CrossRef]

Holmes, M. J.

M. J. Holmes, D. L. Williams, and R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Iannone, E.

R. Sabella and E. Iannone, IEEE J. Sel. Areas Commun. 14, 968 (1996).
[CrossRef]

Inoue, K.

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

Kagi, N.

Karlsson, M.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 15, 2051 (1997).
[CrossRef]

Kazovksy, L. G.

Kelly, A. E.

A. E. Kelly, D. D. Marcenac, and D. Neset, Electron. Lett. 33, 2123 (1997).
[CrossRef]

Manning, R. J.

M. J. Holmes, D. L. Williams, and R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Marcenac, D. D.

A. E. Kelly, D. D. Marcenac, and D. Neset, Electron. Lett. 33, 2123 (1997).
[CrossRef]

Marhic, M. E.

Neset, D.

A. E. Kelly, D. D. Marcenac, and D. Neset, Electron. Lett. 33, 2123 (1997).
[CrossRef]

Sabella, R.

R. Sabella and E. Iannone, IEEE J. Sel. Areas Commun. 14, 968 (1996).
[CrossRef]

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Williams, D. L.

M. J. Holmes, D. L. Williams, and R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Wu, W.

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Yeh, P.

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Electron. Lett.

A. E. Kelly, D. D. Marcenac, and D. Neset, Electron. Lett. 33, 2123 (1997).
[CrossRef]

IEEE J. Quantum Electron.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

IEEE J. Sel. Areas Commun.

R. Sabella and E. Iannone, IEEE J. Sel. Areas Commun. 14, 968 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

M. J. Holmes, D. L. Williams, and R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

J. Lightwave Technol.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 15, 2051 (1997).
[CrossRef]

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated conversion bandwidth and conversion efficiency versus parametric gain for dD/dλ0.05 ps/(nm2 km), L=720 m, and Ppump=600 mW. Vertical dashed lines, parametric gains for normal DS fiber (γ2.2W-1 km-1) and Hi-NL DS fiber γ9.9 W-1 km-1 at the same pump powers.

Fig. 2
Fig. 2

Experimental setup: The signal is generated by a color-center laser; the pump is provided by a passively mode-locked ring erbium-doped fiber laser (EDFL); MOD, modulator; EDFA; erbium-doped fiber amplifier; OBP’s, optical bandpass filters; OSA, optical spectrum analyzer; PC, polarization controller; PD, photodetector; Var Atten, variable attenuator; O-Scope, oscilloscope.

Fig. 3
Fig. 3

Conversion efficiency versus wavelength separation between the pump and the signal wavelengths.

Fig. 4
Fig. 4

Conversion efficiency versus pump power at λp-λs=-10.4 nm. Symbols, experimental data; curve, theoretically predicted conversion efficiency for Δk=-4×10-3 m-1, assuming only MI conversion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ=Δk+2γP,
g=γP2-κ/221/2
Δk-2πcλp2dDdλλ0λp-λ0Δλ2,
η=PaLPs0=γPg2sinh2gL,

Metrics