Abstract

A new technique for single-mode operation of laser-diode arrays is presented. A gain-guided GaAlAs laser diode array is coupled to an external frequency-selective phase-conjugate feedback system that contains a photorefractive barium titanate crystal, a Fabry–Perot etalon, and a spatial filter. The etalon is the key component, and it forces the array, which has low spatial and spectral coherence when it runs freely, to oscillate in a single spatial and a single longitudinal mode. At a drive current of two times the threshold current, the far-field pattern is reduced to only 1.4 times the diffraction limit, the spectral bandwidth is less than 0.02  nm, and the coherence length is increased by a factor of 70. The technique has general validity and can be applied to various other multimode laser systems.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Abbas, S. Yang, and V. W. S. Chan, Opt. Lett. 12, 605 (1987).
    [Crossref] [PubMed]
  2. L. Goldberg and M. K. Chun, Appl. Phys. Lett. 53, 1900 (1988).
    [Crossref]
  3. S. MacCormack, J. Feinberg, and M. H. Garrett, Opt. Lett. 19, 120 (1994).
    [Crossref]
  4. M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
    [Crossref]
  5. S. MacCormack and J. Feinberg, Opt. Lett. 18, 211 (1993).
    [Crossref]
  6. L. Goldberg and J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
    [Crossref]
  7. C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
    [Crossref]
  8. A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
    [Crossref]
  9. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [Crossref] [PubMed]
  10. M. Løbel, P. M. Petersen, and P. M. Johansen, Appl. Phys. Lett. 72, 1263 (1998).
    [Crossref]
  11. J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 66, 1466 (1989).
    [Crossref]
  12. R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
    [Crossref]

1998 (1)

M. Løbel, P. M. Petersen, and P. M. Johansen, Appl. Phys. Lett. 72, 1263 (1998).
[Crossref]

1996 (2)

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[Crossref]

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

1994 (1)

1993 (1)

1989 (2)

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 66, 1466 (1989).
[Crossref]

1988 (1)

L. Goldberg and M. K. Chun, Appl. Phys. Lett. 53, 1900 (1988).
[Crossref]

1987 (3)

M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[Crossref]

L. Goldberg and J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

G. L. Abbas, S. Yang, and V. W. S. Chan, Opt. Lett. 12, 605 (1987).
[Crossref] [PubMed]

1982 (1)

Abbas, G. L.

Beijerinck, H. C. W.

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

Chan, V. W. S.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

Chun, M. K.

L. Goldberg and M. K. Chun, Appl. Phys. Lett. 53, 1900 (1988).
[Crossref]

Dienes, A.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

Feinberg, J.

Fey-den Boer, A. C.

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

Fischer, B.

M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[Crossref]

Fort, C.

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

Garmire, E. M.

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[Crossref]

Garrett, M. H.

Goldberg, L.

L. Goldberg and M. K. Chun, Appl. Phys. Lett. 53, 1900 (1988).
[Crossref]

L. Goldberg and J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

Huignard, J. P.

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 66, 1466 (1989).
[Crossref]

Johansen, P. M.

M. Løbel, P. M. Petersen, and P. M. Johansen, Appl. Phys. Lett. 72, 1263 (1998).
[Crossref]

Løbel, M.

M. Løbel, P. M. Petersen, and P. M. Johansen, Appl. Phys. Lett. 72, 1263 (1998).
[Crossref]

MacCormack, S.

Pavone, F. S.

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

Petersen, P. M.

M. Løbel, P. M. Petersen, and P. M. Johansen, Appl. Phys. Lett. 72, 1263 (1998).
[Crossref]

Pillai, R. M. R.

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[Crossref]

Rajbenbach, H.

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 66, 1466 (1989).
[Crossref]

Scifres, D. R.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

Segev, M.

M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[Crossref]

Streifer, W.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

van Leeuween, K. A. H.

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

Verdiell, J. M.

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 66, 1466 (1989).
[Crossref]

Weiss, S.

M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[Crossref]

Weller, J. F.

L. Goldberg and J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

Whinnery, J. R.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

Yang, S.

Appl. Phys. B (1)

A. C. Fey-den Boer, K. A. H. van Leeuween, H. C. W. Beijerinck, C. Fort, and F. S. Pavone, Appl. Phys. B 63, 117 (1996).
[Crossref]

Appl. Phys. Lett. (5)

L. Goldberg and J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, and D. R. Scifres, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

L. Goldberg and M. K. Chun, Appl. Phys. Lett. 53, 1900 (1988).
[Crossref]

M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[Crossref]

M. Løbel, P. M. Petersen, and P. M. Johansen, Appl. Phys. Lett. 72, 1263 (1998).
[Crossref]

J. Appl. Phys. (1)

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 66, 1466 (1989).
[Crossref]

J. Quantum Electron. (1)

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[Crossref]

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: a GaAlAs laser-diode array coupled to a phase-conjugate mirror. L1, NA of 0.55, f=4.5 mm; L2, lens f=76.2 mm; L3, cylindrical lens f=150 mm; L4, lens f=150 mm. BS, beam splitter (2° wedge); WP, half-wave plate (zero order); ET, Fabry–Perot étalon; SF, spatial filter (two razor blades mounted upon translation stages); M, removable mirror.

Fig. 2
Fig. 2

Optical spectrum at I=0.55 A 2Ith. (a) Phase-locked output (FSPCF applied); FWHM, 0.02  nm. (b) Freely running; FWHM, 0.7 nm.

Fig. 3
Fig. 3

Measured far fields from the array (all curves on the same scale): (a) freely running at I=0.55 A 2Ith, (b) the twin-lobe configuration (mirror and spatial filter removed) at I=0.55 A2Ith, (c) the single-lobe configuration at I=0.55 A2Ith, (d) same as (c) but for a drive current I=0.83 A3Ith.

Fig. 4
Fig. 4

Spectrally resolved near field of the output facet of the array: (a) freely running, (b) single-lobe configuration (only one lobe directed to the PCM) I=0.55 A2Ith.

Fig. 5
Fig. 5

Degree of coherence versus path difference of the arms in a standard Michelson interferometer.

Metrics