Abstract

We present a new method for the extraction of quantitative phase data from microscopic phase samples by use of partially coherent illumination and an ordinary transmission microscope. The technique produces quantitative images of the phase profile of the sample without phase unwrapping. The technique is able to recover phase even in the presence of amplitude modulation, making it significantly more powerful than existing methods of phase microscopy. We demonstrate the technique by providing quantitatively correct phase images of well-characterized test samples and show that the results obtained for more-complex samples correlate with structures observed with Nomarski differential interference contrast techniques.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Teague, J. Opt. Soc. Am. 73, 1434 (1983).
    [CrossRef]
  2. T. E. Gureyev and K. A. Nugent, Opt. Commun. 133, 339 (1997).
    [CrossRef]
  3. D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
    [CrossRef]
  4. S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

1998 (1)

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

1997 (2)

S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

T. E. Gureyev and K. A. Nugent, Opt. Commun. 133, 339 (1997).
[CrossRef]

1983 (1)

Gureyev, T. E.

T. E. Gureyev and K. A. Nugent, Opt. Commun. 133, 339 (1997).
[CrossRef]

Huntington, S. T.

S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

Mulvaney, P.

S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

Nugent, K. A.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

T. E. Gureyev and K. A. Nugent, Opt. Commun. 133, 339 (1997).
[CrossRef]

S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

Paganin, D.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Roberts, A.

S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

Teague, M. R.

J. Appl. Phys. (1)

S. T. Huntington, P. Mulvaney, A. Roberts, and K. A. Nugent, J. Appl. Phys. 86, 1 (1997).

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

T. E. Gureyev and K. A. Nugent, Opt. Commun. 133, 339 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Recovered phase of the test optical fiber. (b) Section through (a) (dashed–dotted curve), along with the theoretical phase shift that one would expect based on the known refractive-index profile of this fiber (solid curve). Significantly, the small refractive-index changes involved (less than 0.3% between adjacent regions) demonstrate the sensitivity of our technique to small phase shifts.

Fig. 2
Fig. 2

Comparison of the recovered phase-amplitude image of an unstained cheek cell recovered from images taken at ±2±0.5 µm on either side of best focus with the sample illuminated by polychromatic illumination. (a) Nomarski DIC image of the cell, (b) recovered phase image. The surface plot in (c) demonstrates that the artifact level outside the cell is low and that both the nucleus and the mitochondria within the cell membrane are clearly resolved.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Or=Arexpiϕr,
IImager=Ar/M2IIllumr,
kIImagerz=-·IImagerϕr/M.
IImagerϕr/M=ψr
Jr1, r2=Ar1/MAr2/Mexpiϕr1/M-ϕr2/Mgr1-r2,

Metrics