Abstract

We utilize the two-photon conductivity of a fused-silica substrate to produce a photoconductive switch for use in an intensity autocorrelator for ultraviolet ultrashort pulses. We perform measurements at 267  nm with pulse durations in the range of 110–330  fs and with energies as weak as 10  nJ. Based on the bandgap of fused silica, this device can potentially operate in the wavelength range of 140–280  nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
    [CrossRef]
  2. E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, Opt. Lett. 18, 2038 (1993).
    [CrossRef]
  3. S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 21, 665 (1996).
    [CrossRef] [PubMed]
  4. A. Reuther, A. Laubereau, and D. Nikogosyan, Opt. Commun. 141, 180 (1997).
    [CrossRef]
  5. J. I. Dadap, G. B. Foght, D. H. Reitze, and M. C. Downer, Opt. Lett. 16, 499 (1991).
    [CrossRef] [PubMed]
  6. R. B. Proctor, J. L. Machol, and F. W. Wise, Appl. Opt. 31, 836 (1992).
    [CrossRef] [PubMed]
  7. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, Opt. Lett. 17, 658 (1992).
    [CrossRef] [PubMed]
  8. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, Opt. Lett. 22, 233 (1997); D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
    [CrossRef] [PubMed]
  9. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1344 (1997).
    [CrossRef]
  10. T. Feurer, A. Glass, and R. Sauerbrey, Appl. Phys. B 5, 295 (1997).
    [CrossRef]
  11. W. Rudolph, M. Sheik-Bahae, A. Berstein, and L. F. Lester, Opt. Lett. 22, 313 (1997).
    [CrossRef] [PubMed]
  12. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
    [CrossRef]
  13. V. Wong and I. A. Walmsley, J. Opt. Soc. Am. B 14, 944 (1997); J. Peatross and A. Rundquist, J. Opt. Soc. Am. B 15, 216 (1998).
    [CrossRef]

1997 (6)

1996 (1)

1993 (1)

1992 (2)

1991 (1)

1988 (1)

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

1978 (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Adhhav, R. S.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Backus, S.

Baltuska, A.

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Berstein, A.

Bloembergen, N.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Bosenberg, W. R.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Canto-Said, E. J.

Cheng, L. K.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Dadap, J. I.

Downer, M. C.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Feurer, T.

T. Feurer, A. Glass, and R. Sauerbrey, Appl. Phys. B 5, 295 (1997).
[CrossRef]

Foght, G. B.

Gaeta, A. L.

Glass, A.

T. Feurer, A. Glass, and R. Sauerbrey, Appl. Phys. B 5, 295 (1997).
[CrossRef]

Imamura, S.

Jordan, C.

Kapteyn, H. C.

Kobayashi, T.

Laubereau, A.

A. Reuther, A. Laubereau, and D. Nikogosyan, Opt. Commun. 141, 180 (1997).
[CrossRef]

Lester, L. F.

Liu, P.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Machol, J. L.

Marowsky, G.

McGowan, C.

Murnane, M. M.

Nikogosyan, D.

A. Reuther, A. Laubereau, and D. Nikogosyan, Opt. Commun. 141, 180 (1997).
[CrossRef]

Padgett, M.

Peatross, J.

Proctor, R. B.

Pshenichnikov, M. S.

Ranka, J. K.

Reid, D. T.

Reitze, D. H.

Reuther, A.

A. Reuther, A. Laubereau, and D. Nikogosyan, Opt. Commun. 141, 180 (1997).
[CrossRef]

Rudolph, W.

Rundquist, A.

Sauerbrey, R.

T. Feurer, A. Glass, and R. Sauerbrey, Appl. Phys. B 5, 295 (1997).
[CrossRef]

Sheik-Bahae, M.

Sibbett, W.

Simon, P.

Sleat, W. E.

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Taft, G.

Takagi, Y.

Tang, C. L.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Walmsley, I. A.

Wiersma, D. A.

Wise, F. W.

Wong, V.

Yoshihara, K.

Zeek, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Feurer, A. Glass, and R. Sauerbrey, Appl. Phys. B 5, 295 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Reuther, A. Laubereau, and D. Nikogosyan, Opt. Commun. 141, 180 (1997).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. B (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Charge produced by the switch as a function of the incident pulse energy. Filled circles, experimental values; solid curve, quadratic fitting function. Inset, design of the switch. The width and the length of the electrodes are 5 and 100  µm, respectively, and width of the gaps is 5  µm.

Fig. 2
Fig. 2

Interferometric autocorrelation traces of (a) the uncompressed UV pulse and (b) the compressed pulse. (c) Noncollinear autocorrelation trace of the compressed pulse. From these traces we estimate the uncompressed and the compressed pulses to be 330 and 130  fs, respectively, in duration.

Fig. 3
Fig. 3

Noncollinear autocorrelation traces of the UV pulse before (solid curve) and after (dotted curve) double passage through a 3-cm fused-silica window. The duration is observed to increase from 110 to 230  fs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Nq=βALF24Wphτp,

Metrics