Abstract

We present a novel, self-referencing interferometric technique for measuring the amplitude and the phase of ultrashort optical pulses. The apparatus uses a collinear geometry that requires no moving components. The phase-retrieval procedure is noniterative and rapid and uses only two one-dimensional Fourier transforms. We apply the technique to characterize ultrashort pulses from a mode-locked Ti:sapphire oscillator.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
    [CrossRef]
  2. C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Topics Quantum Electron. (to be published).
  3. J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
    [CrossRef]
  4. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  5. V. Wong and I. A. Walmsley, J. Opt. Soc. Am. B 14, 944 (1997).
    [CrossRef]
  6. J. E. Rothenberg and D. Grischkowsky, Opt. Lett. 12, 99 (1987).
    [CrossRef] [PubMed]
  7. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  8. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, Opt. Lett. 21, 884 (1996).
    [CrossRef] [PubMed]
  9. K. C. Chu, J. P. Heritage, R. S. Grant, K. X. Liu, A. Dienes, W. E. White, and A. Sullivan, Opt. Lett. 20, 904 (1995).
    [CrossRef] [PubMed]
  10. V. A. Zubov and T. I. Kuznetsova, Laser Phys. 2, 73 (1992).
  11. V. Wong and I. A. Walmsley, Opt. Lett. 19, 287 (1994).
    [CrossRef]
  12. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).
    [CrossRef]
  13. C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).
  14. F. Reynaud, F. Salin, and A. Barthelemy, Opt. Lett. 14, 275 (1989).
    [CrossRef] [PubMed]

1997 (1)

1996 (2)

1995 (2)

1994 (1)

1993 (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

1992 (1)

V. A. Zubov and T. I. Kuznetsova, Laser Phys. 2, 73 (1992).

1991 (1)

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

1989 (1)

1987 (1)

1982 (1)

1973 (1)

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Barthelemy, A.

Bowie, J. L.

Cheriaux, G.

Chilla, J. L. A.

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Chu, K. C.

DeLong, K. W.

Dienes, A.

Fittinghoff, D. N.

Froehly, C.

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Grant, R. S.

Grischkowsky, D.

Heritage, J. P.

Iaconis, C.

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Topics Quantum Electron. (to be published).

Ina, H.

Jennings, R. T.

Joffre, M.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Kobayashi, S.

Krumbugel, M. A.

Kuznetsova, T. I.

V. A. Zubov and T. I. Kuznetsova, Laser Phys. 2, 73 (1992).

Lacourt, A.

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Lepetit, L.

Liu, K. X.

Martinez, O. E.

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Reynaud, F.

Rothenberg, J. E.

Salin, F.

Sullivan, A.

Sweetser, J. N.

Takeda, M.

Trebino, R.

Vienot, J. C.

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Walmsley, I. A.

White, W. E.

Wong, V.

V. Wong and I. A. Walmsley, J. Opt. Soc. Am. B 14, 944 (1997).
[CrossRef]

I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
[CrossRef]

V. Wong and I. A. Walmsley, Opt. Lett. 19, 287 (1994).
[CrossRef]

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Topics Quantum Electron. (to be published).

Zubov, V. A.

V. A. Zubov and T. I. Kuznetsova, Laser Phys. 2, 73 (1992).

IEEE J. Quantum Electron. (2)

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

J. Opt. (Paris) (1)

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

V. A. Zubov and T. I. Kuznetsova, Laser Phys. 2, 73 (1992).

Opt. Lett. (5)

Other (1)

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Topics Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The SPIDER apparatus. χ2 is a nonlinear material. The geometry is entirely collinear and, if a detector array is used at the output of the spectrometer (ωc), has no moving components.

Fig. 2
Fig. 2

Direct (noniterative) inversion routine for retrieving the spectral phase from the recorded spectral interferogram. The procedure requires only two one-dimensional Fourier transforms.

Fig. 3
Fig. 3

(a) Measured electric-field temporal intensity and phase of pulses from a Ti:sapphire oscillator. (b) Comparison of the autocorrelation constructed from the temporal intensity of (a) (solid curve) and the measured autocorrelation (squares).

Fig. 4
Fig. 4

Spectral phase returned by SPIDER for the pulses of Fig.  3 (squares) and for the same pulses after propagation through a dispersive piece of glass (triangles). The spectral phase predicted for the pulses on propagation through the glass is also shown (circles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sωc=E˜ωc2+E˜ωc+Ω2+2E˜ωcE˜ωc+Ω×cosϕωωc+Ω-ϕωωc+ωcτ,

Metrics