Abstract

Smart pixels with smart illumination is a new concept in sensor array technology based on structured built-in illumination and optoelectronic feedback. It offers many new possibilities and potential advantages over more-traditional sensor arrays. We discuss an edge-detection system as an example of how smart illumination can advantageously be used to achieve a variety of functions. We also present initial experimental results from a fabricated chip based on this concept. The chip includes an integrated array of photodetectors and LED's. The output of each pixel can be controlled based on the feedback received by its dual detectors.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Wada, ed., Optoelectronic Integration:?Physics, Technology and Applications (Kluwer, Dordrecht, The Netherlands, 1994).
  2. A. L. Lentine and D. A. B. Miller, IEEE J. Quantum Electron. 29, 655 (1993).
    [CrossRef]
  3. J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
    [CrossRef]
  4. H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
    [CrossRef]
  5. H. S. Hinton, IEEE J. Sel. Topics Quantum Electron. 2, 14 (1996).
    [CrossRef]
  6. D. C. Houghton and B. Jalali, eds., Silicon-Based Monolithic and Hybrid Optoelectronic Devices, Proc. SPIE3007 (1997).
  7. W. R. Babbitt and R. B. Darling, in Optical Computing, Vol.??8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 61–63.
  8. K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
    [CrossRef]

1996 (1)

H. S. Hinton, IEEE J. Sel. Topics Quantum Electron. 2, 14 (1996).
[CrossRef]

1995 (2)

K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
[CrossRef]

H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
[CrossRef]

1994 (1)

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

1993 (1)

A. L. Lentine and D. A. B. Miller, IEEE J. Quantum Electron. 29, 655 (1993).
[CrossRef]

Babbitt, W. R.

W. R. Babbitt and R. B. Darling, in Optical Computing, Vol.??8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 61–63.

Buchanan, M.

H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
[CrossRef]

Cunningham, J. E.

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

Darling, R. B.

W. R. Babbitt and R. B. Darling, in Optical Computing, Vol.??8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 61–63.

Fonstad, C. G.

K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
[CrossRef]

Goossen, K. W.

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

Grot, A. C.

K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
[CrossRef]

Hinton, H. S.

H. S. Hinton, IEEE J. Sel. Topics Quantum Electron. 2, 14 (1996).
[CrossRef]

Jan, W.

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

Lentine, A. L.

A. L. Lentine and D. A. B. Miller, IEEE J. Quantum Electron. 29, 655 (1993).
[CrossRef]

Li, J.

H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
[CrossRef]

Liu, H. C.

H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
[CrossRef]

Miller, D. A. B.

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

A. L. Lentine and D. A. B. Miller, IEEE J. Quantum Electron. 29, 655 (1993).
[CrossRef]

Psaltis, D.

K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
[CrossRef]

Santos, M.

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

Shenoy, K. V.

K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
[CrossRef]

Walker, J. A.

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

Wasilewski, Z. R.

H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
[CrossRef]

Electron. Lett. (1)

H. C. Liu, J. Li, Z. R. Wasilewski, and M. Buchanan, Electron. Lett. 31, 832 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. L. Lentine and D. A. B. Miller, IEEE J. Quantum Electron. 29, 655 (1993).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

H. S. Hinton, IEEE J. Sel. Topics Quantum Electron. 2, 14 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. V. Shenoy, C. G. Fonstad, A. C. Grot, and D. Psaltis, IEEE Photon. Technol. Lett. 7, 508 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. E. Cunningham, K. W. Goossen, J. A. Walker, W. Jan, M. Santos, and D. A. B. Miller, J. Vac. Sci. Technol. B 12, 1246 (1994).
[CrossRef]

Other (3)

O. Wada, ed., Optoelectronic Integration:?Physics, Technology and Applications (Kluwer, Dordrecht, The Netherlands, 1994).

D. C. Houghton and B. Jalali, eds., Silicon-Based Monolithic and Hybrid Optoelectronic Devices, Proc. SPIE3007 (1997).

W. R. Babbitt and R. B. Darling, in Optical Computing, Vol.??8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 61–63.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the electronics and optics for a single pixel. The optics block shown schematically here is general; in reality it can have a variety of configurations. V–I Con., voltage–current converter.

Fig. 2
Fig. 2

Simulated output of SPSI edge detector for an array of pixels.

Fig. 3
Fig. 3

Top view of a single pixel on the chip, with the LED in the middle, surrounded by OPFET and MSM detector pairs.

Fig. 4
Fig. 4

Theoretical (solid curves) and experimental (markers) output voltages of a single pixel for three values of R1 versus R2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Vref=V1+V2=aL1+aL2=aR1+R2Lout,
VoutV1-V2=aL1-aL2=aR1-R2Lout=VrefR1-R2/R1+R2.
VoutV1-V2=Vref-2cR1-R2/R1+R2+2b/a.

Metrics