Abstract

Using 100-ps Nd:YAG pump pulses, we synchronously pump an optical parametric oscillator with intracavity difference-frequency mixing (DFM) between the signal and the idler. The cavity is singly resonant at the signal frequency. The signal, idler, and difference wavelengths are near 1.5, 3.5, and 2.8 µm, respectively. Periodically poled lithium niobate is used for both interactions. Results show an 80% enhancement in the idler power-conversion efficiency and an idler photon-conversion efficiency of 110% when the DFM interaction is phase matched. Backconversion of the pump is suppressed when the DFM interaction is phase matched, and pump depletion increases from 65% to 79% at full pump power.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kafka, M. L. Watts, and J. W. Pieterse, in Ultrafast Phenomena, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 258.
  2. A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phys. B 59, 211 (1994).
    [CrossRef]
  3. K. Koch, G. T. Moore, and E. C. Cheung, J. Opt. Soc. Am. B 12, 2268 (1995).
    [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  5. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  6. S. D. Butterworth, V. Pruneri, and D. C. Hanna, Opt. Lett. 21, 1345 (1996).
    [CrossRef] [PubMed]
  7. L. Goldberg, W. K. Burns, and R. W. McElhanon, Opt. Lett. 20, 1280 (1995).
    [CrossRef] [PubMed]
  8. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  9. Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
    [CrossRef]

1997 (1)

1996 (2)

1995 (3)

1994 (1)

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

1969 (1)

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

Alexander, J. I.

Bosenberg, W. R.

Burns, W. K.

Butterworth, S. D.

Byer, R. L.

Cheung, E. C.

Drobshoff, A.

Eckardt, R. C.

Fejer, M. M.

Goldberg, L.

Hanna, D. C.

Jundt, D. H.

Kafka, J. D.

J. D. Kafka, M. L. Watts, and J. W. Pieterse, in Ultrafast Phenomena, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 258.

Kim, Y. S.

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

Koch, K.

Kruck, P.

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

Lohner, A.

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

McElhanon, R. W.

Moore, G. T.

Myers, L. E.

Pierce, J. W.

Pieterse, J. W.

J. D. Kafka, M. L. Watts, and J. W. Pieterse, in Ultrafast Phenomena, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 258.

Pruneri, V.

Rühle, W. W.

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

Smith, R. T.

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

Watts, M. L.

J. D. Kafka, M. L. Watts, and J. W. Pieterse, in Ultrafast Phenomena, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 258.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. We use a half-wave plate and polarizer (HWPP) to adjust the power from the laser. MML, mode-matching optics; DIAG, diagnostics for the measurements. The two crystals are separated by 1 mm at the beam waist of the pump and the signal waves. The fold angle of the resonator is 0.5°. M1–M4, mirrors.

Fig. 2
Fig. 2

Percent pump depletion (squares) and idler powers (circles) for the OPO (open shapes) and the OPO–DFM (filled shapes) as a function of incident pump power. The OPO crystal is at 72.5 °C, and the DFM crystal is at 125 °C.

Fig. 3
Fig. 3

Internal idler and difference-frequency photon-conversion efficiencies for the OPO–DFM and the idler photon-conversion efficiency for the OPO as a function of incident pump power. The OPO–DFM idler photon-conversion efficiency is greater than 100% for incident pump powers greater than 11.0  W.

Fig. 4
Fig. 4

DFM temperature phase matching for the OPO–DFM device.

Metrics